Applied Physics B

, Volume 93, Issue 1, pp 257–266 | Cite as

Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes

  • K. Tanaka
  • G. W. Burr
  • T. Grosjean
  • T. Maletzky
  • U. C. Fischer


Metal-coated dielectric tetrahedral tips (T-tip) have long been considered to be interesting structures for the confinement of light to nanoscopic dimensions, and in particular as probes for scanning near-field optical microscopy. Numerical investigations using the Finite-Difference Time-Domain (FDTD) method are used to explore the operation of a T-tip in extraction mode. A dipole source in close proximity to the apex excites the tip, revealing the field evolution in the tip, the resulting edge and face modes on the metal-coated surfaces, and the coupling from these modes into highly directional radiation into the dielectric interior of the tip. These results are the starting point for illumination-mode numerical investigations by a Volume Integral equation method, which compute the field distribution that develops in a T-tip when a Gaussian beam is incident into the tip, and which show that a highly confined electric field is produced at the apex of the tip. The process of light confinement can be considered as a superfocussing effect, because the intensity of the tightly confined light spot is significantly higher than that of the focussed yet much wider incident beam. The mechanism of superfocussing can be considered as a dimensional reduction of surface plasmon modes, where an edge plasmon is the most important link between the waveguide-modes inside the tip and the confined near field at the apex.


07.79.Fc 78.67.-n 42.82.Gw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yatsui, M. Kourogi, M. Ohtsu, Plasmon waveguide for optical far/near-field conversion. Appl. Phys. Lett. 79, 4583–4586 (2001) CrossRefADSGoogle Scholar
  2. 2.
    U.C. Fischer, The tetrahedral tip as a probe for scanning near-field optical microscopy, in Near-Field Optics, ed. by D.W. Pohl, D. Courjon. NATO ASI Series E, vol. 242 (Kluwer Academic, Dordrecht, 1993), pp. 255–262 Google Scholar
  3. 3.
    U.C. Fischer, J. Koglin, H. Fuchs, The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution. J. Microsc. 176, 231–237 (1994) Google Scholar
  4. 4.
    U.C. Fischer, A. Dereux, J.-C. Weeber, Controlling light confinement by excitation of localized surface plasmons. Top. Appl. Phys. 81, 49–69 (2001) CrossRefADSGoogle Scholar
  5. 5.
    H.-J. Maas, A. Naber, H. Fuchs, U.C. Fischer, J.C. Weeber, A. Dereux, Imaging of photonic nanopatterns by scanning near-field optical microscopy. Opt. Soc. Am. B 19, 1295–1300 (2002) CrossRefADSGoogle Scholar
  6. 6.
    H.-J. Maas, J. Heimel, H. Fuchs, U.C. Fischer, J.C. Weeber, A. Dereux, Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50–100 nm by scanning near-field optical microscopy. J. Microsc. 209, 241–248 (2003) MathSciNetGoogle Scholar
  7. 7.
    J. Heimel, U.C. Fischer, H. Fuchs, SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter. J. Microsc. 202, 53–59 (2001) CrossRefMathSciNetGoogle Scholar
  8. 8.
    U.C. Fischer, J. Heimel, H.-J. Maas, H. Fuchs, J.C. Weeber, A. Dereux, Super-resolution scanning near-field optical microscopy, in Optical Nanotechnologies—the Manipulation of Surface and Local Plasmons, ed. by J. Tominaga, D.P. Tsai. Topics in Applied Physics, vol. 88 (Springer, Berlin, 2003), pp. 141–151 Google Scholar
  9. 9.
    E.G. Bortchagovsky, J. Heimel, H. Fuchs, U.C. Fischer, Dual wavelength snom imaging of monolayers of j-aggregated dye molecules. J. Korean Phys. Soc. 47, S48–S55 (2005) Google Scholar
  10. 10.
    S. Klein, J. Reichert, H. Fuchs, U.C. Fischer, Near-field Raman spectroscopy using a tetrahedral snom tip, in Proc. of SPIE, vol. 6195 61951F (1–7), 2006 Google Scholar
  11. 11.
    E.G. Bortchagovsky, S. Klein, H. Fuchs, U.C. Fischer, Surface plasmon mediated tip enhanced Raman scattering. Oral contribution to the XXI International Conference on Raman Spectroscopy ICORS, 17–22 August 2008. Uxbridge, West London, UK Google Scholar
  12. 12.
    G. Veronis, S. Fan, Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005) CrossRefADSGoogle Scholar
  13. 13.
    I.V. Novikov, A.A. Maradudin, Channel polaritons. Phys. Rev. B 66, 035403 (2002) CrossRefADSGoogle Scholar
  14. 14.
    D.K. Gramotnev, D.F.P. Pile, Single mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl. Phys. Lett. 86, 6323–6325 (2006) Google Scholar
  15. 15.
    S. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–510 (2006) CrossRefADSGoogle Scholar
  16. 16.
    D.F.P. Pile, T. Oawa, D.K. Gamotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 061106 (2005) CrossRefADSGoogle Scholar
  17. 17.
    E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martin Moreno, F.J. Garcia-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100, 023901 (2008) CrossRefADSGoogle Scholar
  18. 18.
    K. Tanaka, M. Tanaka, Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82(8) (2003) Google Scholar
  19. 19.
    A. Bouhelier, J. Renger, M.R. Beversluis, L. Novotny, Plasmon—coupled tip enhanced near-field microscopy. J. Microsc. 210, 220–224 (2002) CrossRefMathSciNetGoogle Scholar
  20. 20.
    F. Keilmann, Surface polariton propagation for scanning near-field microscopy. J. Microsc. 194, 567 (1999) CrossRefGoogle Scholar
  21. 21.
    K. Li, M.I. Stockman, D.J. Bergman, Self similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 2274021 (2003) Google Scholar
  22. 22.
    A.J. Babadjanyan, N.L. Margaryan, Kh.V. Nerkararyan, Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87(8), 3785–3788 (2000) CrossRefADSGoogle Scholar
  23. 23.
    M.I. Stockman, Nanofocussing of optical energy in tapered plasmonic waveguides. Phys. Rev Lett. 93, 137404 (2004) CrossRefADSGoogle Scholar
  24. 24.
    Kh.V. Nerkarayan, Superfocussing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997) CrossRefADSGoogle Scholar
  25. 25.
    D.F.P. Pile, D.K. Gramotnev, Adiabatic and non adiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006) CrossRefADSGoogle Scholar
  26. 26.
    D.K. Gramotnev, Adiabatic nanofocussing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 98, 104302 (2005) CrossRefADSGoogle Scholar
  27. 27.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005) Google Scholar
  28. 28.
    D.A. Christensen, Analysis of near-field tip patterns including object interaction using finite-difference time-domain calculations. Ultramicroscopy 57(2–3), 189–195 (1995) CrossRefGoogle Scholar
  29. 29.
    J.L. Kann, T.D. Milster, F.F. Froehlich, R.W. Ziolkowski, J.B. Judkins, Linear behavior of a near-field optical-scanning system. J. Opt. Soc. Am. A 12(8), 1677–1682 (1995) ADSGoogle Scholar
  30. 30.
    A. Gara, M.A. Blumrich, D. Chen, G.L.T. Chiu, P. Coteus, M.E. Giampapa, R.A. Haring, P. Heidelberger, D. Hoenicke, G.V. Kopcsay, T.A. Liebsch, M. Ohmacht, B.D. Steinmacher-Burow, T. Takken, P. Vranas, Overview of the Blue Gene/L system architecture. IBM J. Res. Dev. 49(2–3), 195–212 (2005) CrossRefGoogle Scholar
  31. 31.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972) CrossRefADSGoogle Scholar
  32. 32.
    J.A. Roden, S.D. Gedney, Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrary media. Microw. Opt. Technol. Lett. 27(5), 334–339 (2000) CrossRefGoogle Scholar
  33. 33.
    P. Zwamborn, P.M. van den Berg, The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems. IEEE Trans. MTT 40, 1757–1766 (1992) CrossRefGoogle Scholar
  34. 34.
    K. Tanaka, M. Tanaka, T. Sugiyama, Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguide. Opt. Express 13(1), 256–266 (2005) CrossRefADSGoogle Scholar
  35. 35.
    G.S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge University Press, Cambridge, 1997) Google Scholar
  36. 36.
    D.E. Chang, A.S. Soerensen, P.R. Hemmer, M.D. Lukin, Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006) CrossRefADSGoogle Scholar
  37. 37.
    D.E. Chang, A.S. Soerensen, P.R. Hemmer, M.D. Lukin, Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035402 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • K. Tanaka
    • 1
  • G. W. Burr
    • 2
  • T. Grosjean
    • 3
  • T. Maletzky
    • 4
  • U. C. Fischer
    • 4
  1. 1.Department of Electronics and Computer EngineeringGifu UniversityYanagido 1-1Japan
  2. 2.IBM Almaden Research CenterSan JoseUSA
  3. 3.Laboratoire d’Optique P. M. Duffieux UMR 6603CNRS/Université de Franche-Comté, IMFC FR67 UFR Sciences et TechniqueBésaçon cedexFrance
  4. 4.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations