Applied Physics B

, 92:271 | Cite as

Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO

  • V.L. KasyutichEmail author
  • R.J. Holdsworth
  • P.A. Martin


We describe the performance of two mid-infrared laser spectrometers for carbon monoxide, nitrous oxide and nitric oxide detection. The first spectrometer for CO and N2O detection around 2203 cm-1 is based upon all-diode laser difference frequency generation (DFG) in a quasi-phase matched periodically-poled lithium niobate (PPLN) crystal using two continuous-wave room-temperature distributed feedback diode lasers at 859 and 1059 nm. We also report on the performance of a mid-infrared spectrometer for NO detection at ∼ 1900 cm-1 based upon a thermoelectrically-cooled continuous-wave distributed feedback quantum cascade laser (QCL). Both spectrometers had a single-pass optical cell and a thermoelectrically cooled HgCdZnTe photovoltaic detector. Typical minimum detection limits of 2.8 ppmv for CO, 0.6 ppmv for N2O and 2.7 ppmv for NO have been demonstrated for a 100 averaged spectra acquired within 1.25 s and a cell base length of 21 cm at ∼ 100 Torr. Noise-equivalent absorptions of 10-5 and 10-4 Hz-1/2 are typically demonstrated for the QCL and the DFG based spectrometers, respectively.


Nitric Oxide Quantum Cascade Laser Difference Frequency Generation Experimental Absorption Spectrum PPLN Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.A. Martin, Chem. Soc. Rev. 31, 201 (2002)CrossRefGoogle Scholar
  2. 2.
    B. Gradoń, Combust. Sci. Technol. 178, 1477 (2006)CrossRefGoogle Scholar
  3. 3.
    F. Leipold, A. Fateev, Y. Kusano, B. Stenum, H. Bindslev, Fuel 85, 1383 (2006)CrossRefGoogle Scholar
  4. 4.
    R. Barron-Jimenez, J.A. Caton, T.N. Anderson, R.P. Lucht, T. Walter, S. Roy, M.S. Brown, J.R. Gord, Appl. Phys. B 85, 185 (2006)CrossRefADSGoogle Scholar
  5. 5.
    T. Nakayama, H. Fukudsa, A. Sugita, S. Hashimoto, M. Kawasaki, S. Aloisio, I. Morino, G. Inoue, Chem. Phys. 334, 196 (2007)CrossRefADSGoogle Scholar
  6. 6.
    L.J. Muzio, J.C. Kramlich, Geophys. Res. Lett. 15, 1369 (1988)CrossRefADSGoogle Scholar
  7. 7.
    K.P. Petrov, L. Goldberg, W.K. Burns, R.F. Curl, F.K. Tittel, Opt. Lett. 21, 86 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    K.P. Petrov, R.F. Curl, F.K. Tittel, Appl. Phys. B 66, 531 (1998)CrossRefADSGoogle Scholar
  9. 9.
    L. Deng, L. Han, W. Liang, Z. Cao, C. Xu, W. Zhang, Z. Gong, X. Gao, Opt. Lasers Eng. 45, 1055 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Waechter, M.W. Sigrist, Appl. Phys. B 87, 539 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Z. Cao, X. Gao, L. Deng, W.D. Chen, Y. Yuan, W. Zhang, Z. Gong, Spectrochim. Acta A 68, 74 (2007)CrossRefGoogle Scholar
  12. 12.
    J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdra, A. Muller, M. Giovannini, J. Faist, Appl. Phys. B 85, 235 (2006)CrossRefADSGoogle Scholar
  13. 13.
    D.D. Nelson, B. McManus, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Opt. Lett. 31, 2012 (2006)CrossRefADSGoogle Scholar
  14. 14.
    B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Opt. Lett. 31, 823 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)CrossRefADSGoogle Scholar
  16. 16.
    V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, R.P. Wayne, Appl. Phys. B 75, 755 (2002)CrossRefADSGoogle Scholar
  17. 17.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2004)Google Scholar
  18. 18.
    Z. Abd Allah, D. Sawtell, V. Kasiutsich, P. Martin, Initial Work with Non-Thermal Plasmas Produced by a Dielectric Packed Bed Reactor for the Decomposition of Volatile Organic Compounds, 5th Technological Plasmas Workshop, Belfast, 18–19 December (2007)Google Scholar
  19. 19.
    P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.TDL Sensors Ltd, Core Technology FacilityManchesterUK
  2. 2.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK

Personalised recommendations