Applied Physics B

, 92:451

High precision and continuous field measurements of δ13C and δ18O in carbon dioxide with a cryogen-free QCLAS

  • B. Tuzson
  • J. Mohn
  • M.J. Zeeman
  • R.A. Werner
  • W. Eugster
  • M.S. Zahniser
  • D.D. Nelson
  • J.B. McManus
  • L. Emmenegger
Article

Abstract

The present paper describes a compact and cryogen-free, quantum cascade laser based absorption spectrometer (QCLAS) designed for in situ, continuous and high precision isotope ratio measurements of atmospheric CO2. The mobile instrument incorporates several new features including a novel astigmatic multi-pass cell assembly, a quasi-room temperature quantum cascade laser, thermoelectrically cooled detectors as well as a new retrieval approach. The combination of these features now makes it possible to measure isotope ratios of ambient CO2 with a precision of 0.03 and 0.05‰ for δ13C and δ18O, respectively, using a 100 s integration time. A robust and optimized calibration procedure was developed to bring the retrieved isotope ratios on an absolute scale. This assures an accuracy better than 0.1‰ under laboratory conditions. The instrument performance was also assessed in a field campaign in which the spectrometer operated autonomously and provided mixing ratio values for the main three CO2 isotopologues at one second time resolution. An accuracy of 0.2‰ was routinely obtained for both isotope ratios during the entire period. The results were in excellent agreement with the standard laboratory-based isotope ratio mass spectrometer measurements made on field-collected flask samples. A few illustrative examples are used to depict the potential of this optical method in atmosphere–biosphere research.

References

  1. 1.
    S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.), IPCC, 2007: Climate Change 2007: The Physical Science Basis (Cambridge University Press, Cambridge, 2007)Google Scholar
  2. 2.
    P.P. Tans, I.Y. Fung, T. Takahashi, Science 247, 1431 (1990)CrossRefADSGoogle Scholar
  3. 3.
    M. Trolier, J.W.C. White, P.P. Tans, K.A. Masarie, P.A. Gemery, J. Geophys. Res. 101, 25897 (1996)CrossRefADSGoogle Scholar
  4. 4.
    T.J. Conway, P.P. Tans, L.S. Waterman, K.W. Thoning, D.R. Kitzis, K.A. Masarie, N. Zhang, J. Geophys. Res. 99, 22831 (1994)CrossRefADSGoogle Scholar
  5. 5.
    C.D. Keeling, J.F.S. Chin, T.P. Whorf, Nature 382, 146 (1996)CrossRefADSGoogle Scholar
  6. 6.
    C.D. Keeling, Geochim. Cosmochim. Acta 13, 322 (1958)CrossRefADSGoogle Scholar
  7. 7.
    G.D. Farquhar, J. Lloyd, J.A. Taylor, L.B. Flanagan, J.P. Syvertsen, K.T. Hubick, S.C. Wong, J.R. Ehleringer, Nature 363, 439 (1993)CrossRefADSGoogle Scholar
  8. 8.
    P. Ciais, P.P. Tans, M. Trolier, J.W.C. White, R.J. Francey, Science 269, 1098 (1995)CrossRefADSGoogle Scholar
  9. 9.
    D. Nelson, J.B. McManus, S.C. Herndon, M.S. Zahniser, B. Tuzson, L. Emmenegger, Appl. Phys. B 90, 301 (2008)CrossRefADSGoogle Scholar
  10. 10.
    P. Bergamaschi, M. Schupp, G.W. Harris, Appl. Opt. 33, 7704 (1994)ADSGoogle Scholar
  11. 11.
    G. Gagliardi, R. Restieri, G. Casa, L. Gianfrani, Opt. Lasers Eng. 37, 131 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, T.J. Griffis, J.M. Baker, Plant Cell Environ. 29, 483 (2006)Google Scholar
  13. 13.
    T.J. Griffis, J.M. Baker, S.D. Sargent, B.D. Tanner, J. Zhang, Agric. For. Meteorol. 124, 15 (2004)CrossRefGoogle Scholar
  14. 14.
    D.R. Bowling, S.D. Sargent, B.D. Tanner, J.R. Ehleringer, Agric. For. Meteorol. 118, 1 (2003)CrossRefGoogle Scholar
  15. 15.
    H. Waechter, M.W. Sigrist, Appl. Phys. B 87, 539 (2007)CrossRefADSGoogle Scholar
  16. 16.
    M. Erdelyi, D. Richter, F.K. Tittel, Appl. Phys. B 75, 289 (2002)CrossRefADSGoogle Scholar
  17. 17.
    P. Bergamaschi, M. Schupp, G.W. Harris, Appl. Opt. 33, 7704 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    J.B. McManus, M.S. Zahniser, D.D. Nelson, L.R. Williams, C.E. Kolb, Spectrochim. Acta A 58, 2465 (2002)CrossRefGoogle Scholar
  19. 19.
    K. Uehara, K. Yamamoto, T. Kikugawa, N. Yoshida, Spectrochim. Acta A 59, 957 (2003)CrossRefGoogle Scholar
  20. 20.
    C. Janssen, B. Tuzson, Appl. Phys. B 82, 487 (2006)CrossRefADSGoogle Scholar
  21. 21.
    E.R.T. Kerstel, R. van Trigt, N. Dam, J. Reuss, H.A.J. Meijer, Anal. Chem. 71, 5297 (1999)CrossRefGoogle Scholar
  22. 22.
    E.D. Murnick, J.O. Okil, Isotope Environ. Health Stud. 41, 363 (2005)Google Scholar
  23. 23.
    J.B. McManus, D.D. Nelson, J.H. Shorter, R. Jimenez, S. Herndon, S.R. Saleska, M.S. Zahniser, J. Mod. Opt. 52, 2309 (2005)CrossRefADSGoogle Scholar
  24. 24.
    D. Weidmann, C.B. Roller, C. Oppenheimer, A. Fried, F.K. Tittel, Isotope Environ. Health Stud. 41, 293 (2005)Google Scholar
  25. 25.
    A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 24, 1762 (1999)CrossRefADSGoogle Scholar
  26. 26.
    J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Appl. Phys. B 85, 235 (2006)CrossRefADSGoogle Scholar
  27. 27.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys. B 75, 343 (2002)CrossRefADSGoogle Scholar
  28. 28.
    B. Tuzson, M.J. Zeeman, M.S. Zahniser, L. Emmenegger, Infrared Phys. Technol. 51, 198 (2008)CrossRefADSGoogle Scholar
  29. 29.
    P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)CrossRefADSGoogle Scholar
  30. 30.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)Google Scholar
  31. 31.
    J. Mohn, R.A. Werner, B. Buchmann, L. Emmenegger, J. Mol. Struct. 834836, 95 (2007)Google Scholar
  32. 32.
    R.A. Werner, W.A. Brand, Rapid Commun. Mass. Spectrom. 15, 501 (2001)Google Scholar
  33. 33.
    D.E. Theis, M. Saurer, H. Blum, E. Frossard, R.T.W. Siegwolf, Rapid Commun. Mass. Spectrom. 18, 2106 (2004)Google Scholar
  34. 34.
    R.A. Werner, M. Rothe, W.A. Brand, Rapid Commun. Mass. Spectrom. 15, 2152 (2001)Google Scholar
  35. 35.
    P. Ghosh, M. Patecki, M. Rothe, W.A. Brand, Rapid Commun. Mass. Spectrom. 19, 1097 (2005)Google Scholar
  36. 36.
    G.D. Farquhar, J.R. Ehleringer, K.T. Hubick, Ann. Rev. Plant. Physiol. Plant Mol. Biol. 40, 503 (1989)Google Scholar
  37. 37.
    D. Yakir, X.F. Wang, Nature 380, 515 (1996)CrossRefADSGoogle Scholar
  38. 38.
    D.E. Pataki, J.R. Ehleringer, L.B. Flanagan, D. Yakir, D.R. Bowling, C.J. Still, N. Buchmann, J.O. Kaplan, J.A. Berry, Global Biogeochem. Cycl. 17, 1022 (2003)CrossRefADSGoogle Scholar
  39. 39.
    L.B. Flanagan, J.R. Brooks, G.T. Varney, J.R. Ehleringer, Global Biogeochem. Cycl. 11, 83 (1997)CrossRefADSGoogle Scholar
  40. 40.
    N. Buchmann, J.R. Ehleringer, Agric. For. Meteorol. 89, 45 (1998)CrossRefGoogle Scholar
  41. 41.
    L.B. Flanagan, G.T. Varney, Oecologia 101, 37 (1995)Google Scholar
  42. 42.
    P.A. Gemery, M. Trolier, J.W.C. White, J. Geophys. Res. 101, 14415 (1996)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • B. Tuzson
    • 1
  • J. Mohn
    • 1
  • M.J. Zeeman
    • 2
  • R.A. Werner
    • 2
  • W. Eugster
    • 2
  • M.S. Zahniser
    • 3
  • D.D. Nelson
    • 3
  • J.B. McManus
    • 3
  • L. Emmenegger
    • 1
  1. 1.Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Air Pollution and Environmental TechnologyDübendorfSwitzerland
  2. 2.Institute of Plant Sciences, Grassland Science GroupETH ZurichZürichSwitzerland
  3. 3.Aerodyne Research Inc.BillericaUSA

Personalised recommendations