Applied Physics B

, Volume 92, Issue 1, pp 99–102 | Cite as

Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors

  • A. Omrane
  • P. Petersson
  • M. Aldén
  • M.A. Linne


In this paper a new approach for simultaneous 2D velocity and temperature measurements using phosphoric particles is presented. The phosphoric particles respond to the temperature changes in the flow while acting as tracers for velocity mapping. The temperature sensitive particles were seeded into a heated flow and were excited by a pulsed UV laser. The subsequent red shifted emission was detected and analyzed to infer temperature using calibration procedures for lifetime and emission spectra against temperature. The diameter of the temperature sensitive particles, usually in the range of 1–10 μm, makes them useful for velocity measurements using particle image velocimetry (PIV). As such, simultaneous measurement of temperature and flow velocity of a gaseous flow were performed and presented.


Particle Image Velocimetry Particle Image Velocimetry Measurement Phosphoric Particle Interrogation Area Heated Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hu, M.M. Koochesfahani, “Molecular Tagging Technique for the Simultaneous Measurements of Flow Velocity and Temperature Fields”, 4th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-0041Google Scholar
  2. 2.
    P.A.M. Kalt, Y.-C. Chen, R.W. Bilger, Combust. Flame 129, 401 (2002)CrossRefGoogle Scholar
  3. 3.
    U.E. Meier, D. Wolff-Gassmann, W. Stricker, Aerosp. Sci. Technol. 4, 403 (2000)Google Scholar
  4. 4.
    M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963 (1998)CrossRefADSGoogle Scholar
  5. 5.
    C.F. Kaminski, J. Engström, M. Aldén, “Quasi-instanteous two dimensional measurements in a spark ignition engine using 2-line atomic fluorescence”, 27th Symp. (Int.) on Comb./Combust. Inst. (1998), pp. 85–93Google Scholar
  6. 6.
    J. Brübach, A. Dreizler, J. Janicka, Meas. Sci. Technol. 18, 764 (2007)CrossRefADSGoogle Scholar
  7. 7.
    A. Omrane, F. Ossler, M. Aldén, Proc. Combust. Inst. 29, 2653 (2002)CrossRefGoogle Scholar
  8. 8.
    T. Husberg, A. Omrane, S. Girja, I. Denbratt, J. Engström, M. Aldén, SAE paper, 2005-01-1646Google Scholar
  9. 9.
    A. Omrane, G. Juhlin, M. Aldén, G. Jossefsson, B. Timothy, J. Engström, SAE paper, 2004-01-0609Google Scholar
  10. 10.
    A. Omrane, G. Juhlin, F. Ossler, M. Aldén, Appl. Opt. 43, 3523 (2004)CrossRefADSGoogle Scholar
  11. 11.
    A. Omrane, G. Särner, M. Aldén, Appl. Phys. B 79, 431 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Brübach, A. Patt, A. Dreizler, Appl. Phys. B 83, 499 (2006)CrossRefADSGoogle Scholar
  13. 13.
    A. Melling, Meas. Sci. Technol. 8, 1406 (1997)CrossRefADSGoogle Scholar
  14. 14.
    G. Särner, M. Richter, M. Aldén, unpublishedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Omrane
    • 1
  • P. Petersson
    • 1
  • M. Aldén
    • 1
  • M.A. Linne
    • 2
  1. 1.The Division of Combustion PhysicsLund Institute of TechnologyLundSweden
  2. 2.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations