Advertisement

Applied Physics B

, 92:9 | Cite as

57 W, 27 fs pulses from a fiber laser system using nonlinear compression

  • T. EidamEmail author
  • F. Röser
  • O. Schmidt
  • J. Limpert
  • A. Tünnermann
Article

Abstract

We report on the generation of 27 fs pulses with an average output power of 57 W and a repetition rate of 78 MHz. The pulses are generated by combining a high average power fiber chirped pulse amplification (FCPA) system with a microstructured large-mode-area fiber for nonlinear compression. The FCPA system delivers 270 fs pulses in a linearly polarized beam with diffraction-limited quality. Nonlinear compression is achieved by launching the pulses into a short (few cm) piece of microstructured fiber and subsequent compression by a pair of chirped mirrors.

Keywords

Average Output Power High Average Power Nonlinear Compression Thin Disk Laser Compact Setup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)CrossRefADSGoogle Scholar
  2. 2.
    C.V. Shank, R.L. Fork, R. Yen, R.H. Stolen, W.J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)CrossRefADSGoogle Scholar
  3. 3.
    D. Grischkowsky, A.C. Balant, Appl. Phys. Lett. 41, 1 (1982)CrossRefADSGoogle Scholar
  4. 4.
    R. Meinel, Opt. Commun. 47, 343 (1983)CrossRefADSGoogle Scholar
  5. 5.
    J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, Opt. Express 12, 1313 (2004)CrossRefADSGoogle Scholar
  6. 6.
    U. Keller, Pacific Rim Conf., High power modelocked lasers, In: Lasers and Electro-Optics (CLEO/Pacific Rim, 2005), pp. 43–45Google Scholar
  7. 7.
    F. Röser, J. Rothhardt, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, Opt. Lett. 30, 2754 (2005)CrossRefADSGoogle Scholar
  8. 8.
    T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, A. Tünnermann, Opt. Express 13, 7621 (2005)CrossRefADSGoogle Scholar
  9. 9.
    T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.J. Fuchs, E.B. Kley, A. Tünnermann, M. Jupe, D. Ristau, Appl. Opt. 42, 6934 (2003)CrossRefADSGoogle Scholar
  10. 10.
    S. Diddams, J.C. Diels, J. Opt. Soc. Am. B 1, 1120 (1996)CrossRefADSGoogle Scholar
  11. 11.
    W.J. Tomlinson, R.H. Stolen, C.V. Shank, J. Opt. Soc. Am. B 13, 139 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, New York, 2007)Google Scholar
  13. 13.
    www.fiberdesk.comGoogle Scholar
  14. 14.
    R.M. Wood, The Power and Energy Handling Capabilities of Optical Materials Components, and Systems (SPIE Press, Washington, 2003)Google Scholar
  15. 15.
    F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D.N. Schimpf, J. Limpert, A. Tünnermann, Opt. Lett. 32, 3495 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. Eidam
    • 1
    Email author
  • F. Röser
    • 1
  • O. Schmidt
    • 1
  • J. Limpert
    • 1
  • A. Tünnermann
    • 1
    • 2
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-University JenaJenaGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations