Applied Physics B

, 91:661 | Cite as

Detection of trace nitric oxide concentrations using 1-D laser-induced fluorescence imaging

  • J. Yoo
  • T. Lee
  • J.B. Jeffries
  • R.K. Hanson


Spectrally resolved laser-induced fluorescence (LIF) with one-dimensional spatial imaging was investigated as a technique for detection of trace concentrations of nitric oxide (NO) in high-pressure flames. Experiments were performed in the burnt gases of premixed methane/argon/oxygen flames with seeded NO (15 to 50 ppm), pressures of 10 to 60 bar, and an equivalence ratio of 0.9. LIF signals were dispersed with a spectrometer and recorded on a 2-D intensified CCD array yielding both spectral resolution and 1-D spatial resolution. This method allows isolation of NO-LIF from interference signals due to alternative species (mainly hot O2 and CO2) while providing spatial resolution along the line of the excitation laser. A fast data analysis strategy was developed to enable pulse-by-pulse NO concentration measurements from these images. Statistical analyses as a function of laser energy of these single-shot data were used to determine the detection limits for NO concentration as well as the measurement precision. Extrapolating these results to pulse energies of ∼ 16 mJ/pulse yielded a predicted detection limit of ∼ 10 ppm for pressures up to 60 bar. Quantitative 1-D LIF measurements were performed in CH4/air flames to validate capability for detection of nascent NO in flames at 10–60 bar.


Nitric Oxide Laser Energy Equivalence Ratio Shot Noise Laser Pulse Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Warnatz, U. Maas, R.W. Dibble, Combustion, 3rd edn. (Springer, Berlin Heidelberg New York, 1997)Google Scholar
  2. 2.
    C.T. Bowman, Proc. Combust. Inst. 24, 859 (1992)Google Scholar
  3. 3.
    J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley-Interscience, New York, 1997)Google Scholar
  4. 4.
    J.A. Miller, C.T. Bowman, Prog. Energ. Combust. Sci. 15, 287 (1989)CrossRefGoogle Scholar
  5. 5.
    C.T. Bowman, Gas-phase reaction mechanisms for nitrogen oxide formation and removal in combustion, in Pollutants from Combustion, ed. by C. Vovelle (Kluwer, Dordrecht, 2000), pp. 123–144Google Scholar
  6. 6.
    M.S. Smith, L.L. Price, W.D. Williams, AIAA J. 31, 478 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, Amsterdam, 1996)Google Scholar
  8. 8.
    K. Kohse-Höinghaus, J.B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, London, 2002)Google Scholar
  9. 9.
    J.E. Dec, R.E. Canaan, SAE Tech. Paper Series 900147 (1998)Google Scholar
  10. 10.
    P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, SAE Tech. Paper Series 2001-01-1926 (2001)Google Scholar
  11. 11.
    C. Schulz, V. Sick, U.E. Meier, J. Heinze, W. Stricker, Appl. Opt. 38, 1434 (1999)CrossRefADSGoogle Scholar
  12. 12.
    P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, W. Rothe, Appl. Opt. 29, 2392 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    G.C. Glen, C.J. Mueller, C.F. Lee, Appl. Opt. 45, 2089 (2006)CrossRefADSGoogle Scholar
  14. 14.
    A.O. Vyrodov, J. Heinze, M. Dillman, U.E. Meier, W. Stricker, Appl. Phys. B 61, 409 (1995)CrossRefADSGoogle Scholar
  15. 15.
    M.D. DiRosa, K.G. Klavuhn, R.K. Hanson, Combust. Sci. Technol. 118, 257 (1996)CrossRefGoogle Scholar
  16. 16.
    W.P. Patridge, M.S. Klassen, D.D. Thomsen, N.M. Laurendeau, Appl. Opt. 34, 4890 (1996)ADSGoogle Scholar
  17. 17.
    D.D. Thomsen, F.F. Kuligowski, N.M. Laurendeau, Appl. Opt. 36, 3244 (1997)CrossRefADSGoogle Scholar
  18. 18.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 42, 4922 (2003)CrossRefADSGoogle Scholar
  19. 19.
    W.G. Bessler, Quantitative nitric oxide concentration and temperature imaging in flames over a wide pressure range with laser-induced fluorescence, Dissertation, Physikalisch-Chemisches Institut, University of Heidelberg (2003)Google Scholar
  20. 20.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 41, 3547 (2002)CrossRefADSGoogle Scholar
  21. 21.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 42, 2031 (2003)CrossRefADSGoogle Scholar
  22. 22.
    C. Schulz, J.B. Jeffries, D.F. Davidson, J.D. Koch, J. Wolfrum, R.K. Hanson, Proc. Combust. Inst. 29, 2725 (2002)CrossRefGoogle Scholar
  23. 23.
    T. Lee, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 31, 757 (2006)CrossRefGoogle Scholar
  24. 24.
    H. Kronemayer, K. Omerbegovic, C. Schulz, Appl. Opt. 46, 8322 (2007)CrossRefADSGoogle Scholar
  25. 25.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Chem. Phys. Lett. 375, 344 (2003)CrossRefADSGoogle Scholar
  26. 26.
    W.G. Bessler, C. Schulz, V. Sick, J.W. Daily, A versatile modeling tool for nitric oxide LIF spectra, in 3rd Joint Meeting US Sec. Combust. Inst., Chicago (2003),, accessed 2007Google Scholar
  27. 27.
    T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, Appl. Opt. 44, 6718 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations