Applied Physics B

, Volume 91, Issue 3–4, pp 601–604

Polarization properties of subwavelength hole arrays consisting of rectangular holes

  • X.-F. Ren
  • P. Zhang
  • G.-P. Guo
  • Y.-F. Huang
  • Z.-W. Wang
  • G.-C. Guo
Article

Abstract

The influence of hole shape on extraordinary optical transmission was investigated using hole arrays consisting of rectangular holes with different aspect ratios. It was found that the transmission could be tuned continuously by rotating the hole array. Furthermore, a phase was generated in this process, and linear polarization states could be changed to elliptical polarization states. This phase was correlated with the aspect ratio of the holes. An intuitional model was presented to explain these results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)CrossRefADSGoogle Scholar
  2. 2.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, Berlin, 1988)Google Scholar
  3. 3.
    D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, T. Thio, Appl. Phys. Lett. 77, 1569 (2000)CrossRefADSGoogle Scholar
  4. 4.
    M. Moreno, F.J. Garca-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001)CrossRefADSGoogle Scholar
  5. 5.
    S.M. Williams, K.R. Rodriguez, S. Teeters-Kennedy, A.D. Stafford, S.R. Bishop, U.K. Lincoln, J.V. Coe, J. Phys. Chem. B 108, 11833 (2004)CrossRefGoogle Scholar
  6. 6.
    A.G. Brolo, R. Gordon, B. Leathem, K.L. Kavanagh, Langmuir 20, 4813 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Nahata, R.A. Linke, T. Ishi, K. Ohashi, Opt. Lett. 28, 423 (2003)CrossRefADSGoogle Scholar
  8. 8.
    X. Luo, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004)CrossRefADSGoogle Scholar
  9. 9.
    S. Shinada, J. Hasijume, F. Koyama, Appl. Phys. Lett. 83, 836 (2003)CrossRefADSGoogle Scholar
  10. 10.
    C. Genet, T.W. Ebbeson, Nature 445, 39 (2007)CrossRefADSGoogle Scholar
  11. 11.
    J. Elliott, I.I. Smolyaninov, N.I. Zheludev, A.V. Zayats, Opt. Lett. 29, 1414 (2004)CrossRefADSGoogle Scholar
  12. 12.
    R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K.L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004)CrossRefADSGoogle Scholar
  13. 13.
    E. Altewischer, C. Genet, M.P. van Exter, J.P. Woerdman, Opt. Lett. 30, 90 (2005)CrossRefADSGoogle Scholar
  14. 14.
    X.F. Ren, G.P. Guo, Y.F. Huang, Z.W. Wang, G.C. Guo, Opt. Lett. 31, 2792 (2006)CrossRefADSGoogle Scholar
  15. 15.
    X.F. Ren, G.P. Guo, Y.F. Huang, C.F. Li, G.C. Guo, Europhys. Lett. 76, 753 (2006)CrossRefADSGoogle Scholar
  16. 16.
    E. Altewischer, M.P. van Exter, J.P. Woerdman, Nature 418, 304 (2002)CrossRefADSGoogle Scholar
  17. 17.
    S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, H. Zbinden, Phys. Rev. Lett. 94, 110501 (2005)CrossRefADSGoogle Scholar
  18. 18.
    K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Z. Ruan, M. Qiu, Phys. Rev. Lett. 96, 233901 (2006)CrossRefADSGoogle Scholar
  20. 20.
    M. Sarrazin, J.P. Vigneron, Opt. Commun. 240, 89 (2004)CrossRefADSGoogle Scholar
  21. 21.
    X.F. Ren, G.P. Guo, Y.F. Huang, Z.W. Wang, G.C. Guo, Appl. Phys. Lett. 90, 161112 (2007)CrossRefADSGoogle Scholar
  22. 22.
    F.L. Tejeira, S.G. Rodrigo, L.M. Moreno, F.J.G. Vidal, E. Devaux, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.U. Gonzalez, J.C. Weeber, A. Dereux, Nature Phys. 3, 324 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • X.-F. Ren
    • 1
  • P. Zhang
    • 1
  • G.-P. Guo
    • 1
  • Y.-F. Huang
    • 1
  • Z.-W. Wang
    • 1
  • G.-C. Guo
    • 1
  1. 1.Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations