Applied Physics B

, 91:521 | Cite as

Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes

Article

Abstract

A large number of individual single-walled carbon nanotubes (SWNTs) were obtained by dilution of nanotube dispersions in N-methyl-2-pyrrolidone (NMP). Up to 70% individual SWNTs are contained in the NMP dispersions with concentrations of less than 4.0×10-3 mg/mL. The nonlinear optical and optical limiting properties of SWNT dispersions were studied by using the Z-scan technique at 532 nm. As the concentration of SWNTs is increased, the nonlinear extinction (NLE) and optical limiting effects improve significantly, while the limiting thresholds decrease gradually. The individual SWNTs show similar NLE effect to zinc phthalocyanine nanoparticles, while also exhibiting larger NLE coefficients than Mo6S4.5I4.5 nanowires.

References

  1. 1.
    S.M. O’Flaherty, S.V. Hold, M.J. Cook, T. Torres, Y. Chen, M. Hanack, W.J. Blau, Adv. Mater. 15, 19 (2003)CrossRefGoogle Scholar
  2. 2.
    G. de la Torre, P. Vázquez, F. Agulló-López, T. Torres, Chem. Rev. 104, 3723 (2004)CrossRefGoogle Scholar
  3. 3.
    F.Z. Henari, W.J. Blau, L.R. Milgrom, G. Yahioglu, D. Phillips, J.A. Lacey, Chem. Phys. Lett. 267, 229 (1997)CrossRefADSGoogle Scholar
  4. 4.
    W.J. Blau, H. Byrne, W.M. Dennis, J.M. Kelly, Opt. Commun. 56, 25 (1985)CrossRefADSGoogle Scholar
  5. 5.
    J. Callaghan, W.J. Blau, J. Nonlinear Opt. Phys. Mater. 9, 505 (2000)CrossRefADSGoogle Scholar
  6. 6.
    F.Z. Henari, J. Callaghan, H. Stiel, W.J. Blau, D.J. Cardin, Chem. Phys. Lett. 199, 144 (1992)CrossRefADSGoogle Scholar
  7. 7.
    S.R. Mishra, H.S. Rawat, S.C. Mehendale, K.C. Rustagi, A.K. Sood, R. Bandyopadhyay, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 317, 510 (2000)CrossRefADSGoogle Scholar
  8. 8.
    L. Vivien, P. Lançon, D. Riehl, F. Hache, E. Anglaret, Carbon 40, 1789 (2002)CrossRefGoogle Scholar
  9. 9.
    N. Izard, P. Billaud, D. Riehl, E. Anglaret, Opt. Lett. 30, 1509 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X.D. Zhuang, J.R. Bai, W.J. Blau, J. Nanosci. Nanotechnol. 7, 1268 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Nuriel, L. Liu, A.H. Barber, H.D. Wagner, Chem. Phys. Lett. 404, 263 (2005)CrossRefADSGoogle Scholar
  12. 12.
    J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 303, 125 (1999)CrossRefADSGoogle Scholar
  13. 13.
    K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, J. Phys. Chem. B 104, 8911 (2000)CrossRefGoogle Scholar
  14. 14.
    C.A. Furtado, U.J. Kim, H.R. Gutierrez, L. Pan, E.C. Dickey, P.C. Eklund, J. Am. Chem. Soc. 126, 6095 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau, J.N. Coleman, J. Phys. Chem. B 110, 15708 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. QE-26, 760 (1990)CrossRefADSGoogle Scholar
  17. 17.
    C. Nitschke, S.M. O’Flaherty, M. Kröll, J.J. Doyle, W.J. Blau, Chem. Phys. Lett. 383, 555 (2004)CrossRefADSGoogle Scholar
  18. 18.
    J.J. Doyle, V. Nicolosi, S.M. O’Flaherty, D. Vengust, A. Drury, D. Mihailovic, J.N. Coleman, W.J. Blau, Chem. Phys. Lett. 435, 109 (2007)CrossRefADSGoogle Scholar
  19. 19.
    X. Sun, Y.N. Xiong, P. Chen, J.Y. Lin, W. Ji, J.H. Lim, S.S. Yang, D.J. Hagan, E.W. Van Stryland, Appl. Opt. 39, 1998 (2000)CrossRefADSGoogle Scholar
  20. 20.
    L. Vivien, D. Riehl, J.F. Delouis, J.A. Delaire, F. Hache, E. Anglaret, J. Opt. Soc. Am. B 19, 208 (2002)CrossRefADSGoogle Scholar
  21. 21.
    J. Wang, W.J. Blau, J. Phys. Chem. C 112, 2298 (2008)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of PhysicsTrinity College DublinDublinIreland

Personalised recommendations