Applied Physics B

, Volume 91, Issue 2, pp 315–318

Generation and application of high power femtosecond pulses in the vibrational fingerprint region

  • A.B. Sugiharto
  • C.M. Johnson
  • H.B. de Aguiar
  • L. Alloatti
  • S. Roke
Open Access
Article

Abstract

We present a novel high power femtosecond infrared laser source, based on a three-stage chirped-pulse amplification scheme. Owing to the high power output of the Ti:sapphire amplifiers, it becomes routinely possible to produce femtosecond infrared laser pulses in the wavelength region of 2.6–20 μm with minimum pulse energies of 15 μJ, to our knowledge roughly an improvement of an order of magnitude. With such pulses we have performed femtosecond second-order nonlinear optical surface spectroscopy in the fingerprint region. We have probed the skeletal modes of the first few monolayers of a polymer/air interface in a femtosecond vibrational sum frequency generation experiment. This development opens up new possibilities to investigate surface structures and dynamics of, e.g., organo-metallic compounds, proteins, and peptides.

References

  1. 1.
    J. McMurry, Organic Chemistry (Brooks/Cole Pub Co, New York, 1995)Google Scholar
  2. 2.
    P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1990)Google Scholar
  3. 3.
    T. Elsaesser, M. Woerner, Phys. Rep. 321, 254 (1999)CrossRefADSGoogle Scholar
  4. 4.
    J. Stenger, D. Madsen, P. Hamm, E.T.J. Nibbering, T. Elsaesser, Phys. Rev. Lett. 8702, 027401 (2001)CrossRefADSGoogle Scholar
  5. 5.
    A.M. Dokter, S. Woutersen, H.J. Bakker, Proc. Nat. Acad. Sci. 103, 15355 (2006)CrossRefADSGoogle Scholar
  6. 6.
    J. Bredenbeck, J. Helbing, P. Hamm, J. Chem. Phys. 121, 5943 (2004)CrossRefADSGoogle Scholar
  7. 7.
    S. Roke, A.W. Kleyn, M. Bonn, Chem. Phys. Lett. 370, 227 (2003)CrossRefADSGoogle Scholar
  8. 8.
    J. Kubota, K. Domen, Anal. Bioanal. Chem. 388, 17 (2007)CrossRefGoogle Scholar
  9. 9.
    J.A. McGuire, Y.R. Shen, Science 313, 1945 (2006)CrossRefADSGoogle Scholar
  10. 10.
    M. Smits, A. Ghosh, M. Sterrer, M. Mueller, M. Bonn, Phys. Rev. Lett. 98, 098302 (2007)CrossRefADSGoogle Scholar
  11. 11.
    S. Das, C. Ghosh, S. Gangopadhyay, U. Chatterjee, C.G. Bhar, V. Voevodin, O.G. Voevodina, J. Opt. Soc. Am. B 23, 282 (2006)CrossRefADSGoogle Scholar
  12. 12.
    R. Kaindl, M. Wurm, K. Reimann, P. Hamm, M. Weiner, A.M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000)CrossRefADSGoogle Scholar
  13. 13.
    S.H. Shim, D.B. Strasfeld, E.C. Fulmer, M.T. Zanni, Opt. Lett. 31, 838 (2006)CrossRefADSGoogle Scholar
  14. 14.
    T. Witte, D. Zeidler, D. Proch, K.L. Kompa, M. Motzkus, Opt. Lett. 27, 131 (2002)CrossRefADSGoogle Scholar
  15. 15.
    S. Ashihara, N. Huse, A. Espagne, E.T.J. Nibbering, T. Elsaesser, J. Phys. Chem. A 111, 743 (2007)CrossRefGoogle Scholar
  16. 16.
    C.W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, K.H. Ploog, Phys. Rev. Lett. 92, 047402 (2004)CrossRefADSGoogle Scholar
  17. 17.
    G. Ma, H.C. Allen, Langmuir 22, 5341 (2006)CrossRefGoogle Scholar
  18. 18.
    D.K. Hore, J.L. King, F.G. Moore, D.S. Alavi, M.Y. Hamamoto, G.L. Richmond, Appl. Spectrosc. 58, 1377 (2004)CrossRefADSGoogle Scholar
  19. 19.
    A.A. Mani, Z.D. Schultz, A.A. Gewirth, J.O. White, Y. Caudano, C. Humbert, L. Dreesen, P.A. Thiry, A. Peremans, Opt. Lett. 29, 274 (2004)CrossRefADSGoogle Scholar
  20. 20.
    E.W.M. van der Ham, Q.H.F. Vrehen, E.R. Eliel, Surf. Sci. 368, 96 (1996)CrossRefADSGoogle Scholar
  21. 21.
    E.W.M. van der Ham, Q.H.F. Vrehen, E.R. Eliel, Opt. Lett. 21, 1448 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    R. Braun, B.D. Casson, C.D. Bain, E.W.M. van der Ham, Q.H.F. Vrehen, E.R. Eliel, A.M. Briggs, P.B. Davies, J. Chem. Phys. 110, 4634 (1999)CrossRefADSGoogle Scholar
  23. 23.
    L.J. Richter, T.P. Petralli-Mallow, J.C. Stephenson, Opt. Lett. 23, 1594 (1998)ADSGoogle Scholar
  24. 24.
    P. Hamm, M. Lim, W.F. DeGrado, R.M. Hochstrasser, J. Chem. Phys. 112, 1907 (2000)CrossRefADSGoogle Scholar
  25. 25.
    H. Maekawa, K. Tominaga, D. Podenas, Japan. J. Appl. Phys. 41, L329 (2002)CrossRefADSGoogle Scholar
  26. 26.
    H. Tsuji, Macromol. Biosci. 5, 569 (2005)CrossRefGoogle Scholar
  27. 27.
    C. Aleman, B. Lotz, J. Puiggali, Macromolecules 34, 4795 (2001)CrossRefADSGoogle Scholar
  28. 28.
    K. Aou, S.L. Hsu, Macromolecules 39, 3337 (2006)CrossRefADSGoogle Scholar
  29. 29.
    J.H. Hunt, P. Guyot-Sionnest, Y.R. Shen, Chem. Phys. Lett. 133, 189 (1987)CrossRefADSGoogle Scholar
  30. 30.
    S.H. Kang, S.L. Hsu, H.D. Stidham, P.B. Smith, M.A. Leugers, X.Z. Yang, Macromolecules 34, 4542 (2001)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • A.B. Sugiharto
    • 1
  • C.M. Johnson
    • 1
  • H.B. de Aguiar
    • 1
  • L. Alloatti
    • 1
  • S. Roke
    • 1
  1. 1.Max Planck Institute for Metals ResearchStuttgartGermany

Personalised recommendations