Applied Physics B

, Volume 91, Issue 2, pp 333–336 | Cite as

Transmission loss and dispersion in plastic terahertz photonic band-gap fibers



We present an investigation into the transmission loss and dispersion of terahertz waves in plastic photonic band-gap fibers having a cladding with a finite number of air hole rings. The leakage loss and absorption loss caused by background material are analyzed by a full-vectorial two-dimensional finite difference frequency domain method and the lowest power transmission loss of 6.126 dB/m at 1.75 THz is realized. Numerical results show that a larger diameter-to-pitch ratio is suitable for lower transmission loss and lower group-velocity dispersion in plastic terahertz photonic band-gap fibers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Wang, D.M. Mittleman, J. Opt. Soc. Am. B 22, 2001 (2005)CrossRefADSGoogle Scholar
  2. 2.
    G. Gallot, S.P. Jamison, R.W. McGowan, D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000)CrossRefADSGoogle Scholar
  3. 3.
    S. Coleman, D. Grischkowsky, Appl. Phys. Lett. 84, 654 (2004)CrossRefADSGoogle Scholar
  4. 4.
    R. Mendis, D. Grischkowsky, Opt. Lett. 26, 846 (2001)CrossRefADSGoogle Scholar
  5. 5.
    J.A. Harrington, R. George, P. Pedersen, Opt. Express 12, 5263 (2004)CrossRefADSGoogle Scholar
  6. 6.
    R. Mendis, D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000)CrossRefADSGoogle Scholar
  7. 7.
    S.P. Jamison, R.W. McGowan, D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000)CrossRefADSGoogle Scholar
  8. 8.
    H. Han, H. Park, M. Cho, J. Kim, Appl. Phys. Lett. 80, 2634 (2002)CrossRefADSGoogle Scholar
  9. 9.
    M. Goto, A. Quema, H. Takahashi, S. Ono, N. Sarukura, Japan. J. Appl. Phys. 43, 317 (2004)CrossRefADSGoogle Scholar
  10. 10.
    G.W. Chantry, J.W. Fleming, P.M. Smith, M. Cudby, H.A. Willis, Chem. Phys. Lett. 10, 473 (1971)CrossRefADSGoogle Scholar
  11. 11.
    M. Naftaly, R.E. Miles, Proc. IEEE 95, 1658 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Broeng, S.E. Barkou, T. Sondergaard, A. Bjarklev, Opt. Lett. 25, 96 (2000)CrossRefADSGoogle Scholar
  13. 13.
    R.J. Yu, Y.Q. Zhang, C.Q. Wu, Z.G. Tian, X.Z. Bai, IEEE Photon. Technol. Lett. 19, 910 (2007)CrossRefADSGoogle Scholar
  14. 14.
    H.K. Kim, J. Shin, S. Fan, J.F. Digonnet, G.S. Kino, IEEE J. Quantum Electron. QE-40, 551 (2004)ADSGoogle Scholar
  15. 15.
    S. Guo, S. Albin, Opt. Express 11, 167 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S. Guo, F. Wu, S. Albin, Opt. Express 12, 3341 (2004)CrossRefADSGoogle Scholar
  17. 17.
    R. Guobing, W. Zhi, L. Shuqin, J. Shuisheng, Opt. Express 12, 1126 (2004)CrossRefADSGoogle Scholar
  18. 18.
    K.S. Yee, IEEE Trans. Antennas Propagat. 14, 302 (1966)Google Scholar
  19. 19.
    S. Fevrier, R. Jamier, J.M. Blondy, Opt. Express 14, 562 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.College of Precision Instrument and Optoelectronics Engineering, Institute of Laser and OptoelectronicsTianjin UniversityTianjinP.R. China
  2. 2.Key Laboratory of Optoelectric Information Science and Technology, Ministry of EducationTianjin UniversityTianjinP.R. China

Personalised recommendations