Applied Physics B

, Volume 91, Issue 1, pp 195–201 | Cite as

Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis

  • M. Triki
  • P. Cermak
  • G. Méjean
  • D. Romanini


Incoherent broad-band cavity-enhanced absorption spectroscopy (IBB-CEAS) based on arc lamps has been around for a few years, but only two reports exist using light-emitting diodes (LEDs). We present a setup based on a 643-nm LED which is of interest for the simultaneous detection of NO3 and NO2. The latter is chosen for testing as it is stable and available in calibrated diluted samples. A detection limit in the ppbv range is obtained with 2-min averaging (5×10-9 /cm rms baseline noise level), comparable to the best performance of chemiluminescence devices used for pollution monitoring. At 1-s acquisition time, the detection limit is below 10 ppbv. Extrapolation to NO3 yields a detection limit of a few pptv for a few minutes averaging. We also test the retrieval of absolute sample absorption (and concentration) using the cavity mirror reflectivity obtained with a commercial spectrophotometer, and we conclude that a calibration based on a reference sample of known concentration is preferable for accurate concentration measurements with IBB-CEAS. Finally, we present a rigorous frequency-domain derivation of cavity transmission as a function of wavelength for a broad-band spectrally smooth source, which complements the time-domain derivation by Fiedler et al. This derivation exposes an issue with multiple transverse mode excitation inherent to this technique, which may result in slightly distorted spectral profiles.


Charge Couple Device Transverse Mode Cavity Output Cavity Ring Down Spectroscopy Cavity Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Graham, H.S. Johnston, J. Phys. Chem. 82, 254 (1978)CrossRefGoogle Scholar
  2. 2.
    M.I. Mazurenka, B.L. Fawcett, J.M.F. Elks, D.E. Shallcross, A.J.O. Ewing, Chem. Phys. Lett. 367, 1 (2003)CrossRefADSGoogle Scholar
  3. 3.
    R. Wada, A.J.O. Ewing, Analyst 130, 1595 (2005)CrossRefGoogle Scholar
  4. 4.
    I. Courtillot, J. Morville, V. Motto-Ros, D. Romanini, Appl. Phys. B 85, 407 (2006)CrossRefADSGoogle Scholar
  5. 5.
    S.E. Fiedler, A. Hese, A.A. Ruth, Chem. Phys. Lett. 371, 284 (2003)CrossRefADSGoogle Scholar
  6. 6.
    D.S. Venables, T. Gherman, J. Orphal, J.C. Wenger, A.A. Ruth, Environ. Sci. Technol. 40, 6758 (2006)CrossRefGoogle Scholar
  7. 7.
    S.M. Ball, J.M. Langridge, R.L. Jones, Chem. Phys. Lett. 398, 68 (2004)CrossRefADSGoogle Scholar
  8. 8.
    J.M. Langridge, S.M. Ball, R.L. Jones, Analyst 131, 916 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Gherman, D.S. Venables, S. Vaughan, J. Orphal, A.A. Ruth, Environ. Sci. Technol. 890, 42 (2008)Google Scholar
  10. 10.
    F. Heintz, U. Platt, H. Flentje, R. Dubois, J. Geophys. Res. D 101, 22891 (1996)CrossRefADSGoogle Scholar
  11. 11.
    P.L. Kebabian, W.A. Robinson, A. Freedman, Rev. Sci. Instrum. 78, 063102 (2007)CrossRefADSGoogle Scholar
  12. 12.
    K.K. Lehmann, D. Romanini, J. Chem. Phys. 105, 10263 (1996)CrossRefADSGoogle Scholar
  13. 13.
    C. Kern, S. Trick, B. Rippel, U. Platt, Appl. Opt. 45, 2077 (2006)CrossRefADSGoogle Scholar
  14. 14.
    S. Voigt, J. Orphal, J. Burrows, J. Photochem. Photobiol. A 149, 1 (2002)CrossRefGoogle Scholar
  15. 15.
    S.P. Sander, J. Phys. Chem. 90, 4135 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Laboratoire de Spectrométrie Physique, CNRS UMR 5588Université J. Fourier de GrenobleSaint Martin d’HèresFrance

Personalised recommendations