Applied Physics B

, Volume 91, Issue 1, pp 57–60 | Cite as

A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms



A narrow-line diode laser system has been developed for high-resolution spectroscopy of the magnetic quadrupole transition in ytterbium (Yb) atoms at 507 nm. The system consists of an extended-cavity laser diode at 1014 nm, a tapered amplifier and a periodically poled lithium niobate nonlinear crystal which converts the wavelength from 1014 nm to 507 nm. We have stabilized the laser frequency and reduced the linewidth below 1 kHz by tightly locking the laser to a high-finesse optical cavity. By using the developed laser system, we have successfully observed the ultranarrow

\({}^{1}{S}_{0}\leftrightarrow^{3}{P}_{2}\) transition in Yb atoms. Furthermore, our simple and compact laser system could be a high performance and portable frequency reference using iodine spectra whose linewidth becomes less than 50 kHz around 507 nm. We have also demonstrated spectroscopy of iodine molecules.


Iodine Molecule Laser Linewidth Diode Laser System Ytterbium Atom Saturation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Courtillot, A. Quessada, R.P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G.D. Rovera, P. Lemonde, Phys. Rev. A 68, 030501(R) (2003)Google Scholar
  2. 2.
    C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, L. Hollberg, Phys. Rev. Lett. 95, 083003 (2005)CrossRefADSGoogle Scholar
  3. 3.
    A.V. Taichenachev, V.I. Yudin, C.W. Oates, C.W. Hoyt, Z.W. Barber, L. Hollberg, Phys. Rev. Lett. 96, 083001 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Z.W. Barber, C.W. Hoyt, C.W. Oates, L. Hollberg, A.V. Taichenachev, V.I. Yudin, Phys. Rev. Lett. 96, 083002 (2006)CrossRefADSGoogle Scholar
  5. 5.
    M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, Nature (London) 435, 321 (2005)CrossRefADSGoogle Scholar
  6. 6.
    J.L. Hall, M. Zhu, P. Buch, J. Opt. Soc. Am. B 6, 2194 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    A. Yamaguchi, S. Uetake, S. Kato, H. Ito, Y. Takahashi, submittedGoogle Scholar
  8. 8.
    M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, T.W. Hänsch, Opt. Lett. 32, 955 (2007)CrossRefADSGoogle Scholar
  9. 9.
    D.M. Harber, M.V. Romalis, Phys. Rev. A 63, 013402 (2000)CrossRefADSGoogle Scholar
  10. 10.
    H. Hachisu, K. Miyagishi, S.G. Porsev, A. Derevianko, V.D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, H. Katori, arXiv:0711.4638v1 [physics.atom-ph]Google Scholar
  11. 11.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)CrossRefADSGoogle Scholar
  12. 12.
    R.A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, P. Bouyer, Rev. Sci. Instrum. 77, 033105 (2006)CrossRefADSGoogle Scholar
  13. 13.
    W.-Y. Cheng, L. Chen, T.H. Yoon, J.L. Hall, J. Ye, Opt. Lett. 27, 571 (2002)CrossRefADSGoogle Scholar
  14. 14.
    S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode entre 14800–20000 cm-1 (Editions du Centre National de la Research Scientique, Paris, 1978)Google Scholar
  15. 15.
    G. Camy, C.J. Bordé, M. Ducloy, Opt. Commun. 41, 325 (1982)CrossRefADSGoogle Scholar
  16. 16.
    J.H. Shirley, Opt. Lett. 7, 537 (1982)ADSGoogle Scholar
  17. 17.
    Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003)CrossRefADSGoogle Scholar
  18. 18.
    T. Fukuhara, Y. Takasu, M. Kumakura, Y. Takahashi, Phys. Rev. Lett. 98, 030401 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.CREST, Japan Science and Technology AgencySaitamaJapan

Personalised recommendations