Advertisement

Applied Physics B

, Volume 90, Issue 3–4, pp 365–368 | Cite as

Terahertz time domain spectroscopy for the analysis of cultural heritage related materials

  • J.-M. Manceau
  • A. Nevin
  • C. Fotakis
  • S. Tzortzakis
Rapid communication

Abstract

A powerful broadband femtosecond laser-driven terahertz source was built and used to analyze cultural heritage and art-related materials in the terahertz region of the electromagnetic spectrum. The high signal-to-noise ratio available in our system revealed details in the absorption spectra which are inaccessible with traditional FTIR spectrometers. Clear spectral signatures were recorded from organic binding media thus demonstrating the potential of the approach for applications in the monitoring and analysis of cultural heritage materials.

Keywords

Cultural Heritage ZnTe High Dynamic Range Binding Medium Animal Glue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ferguson, X.-C. Zhang, Nature Mater. 1, 26 (2002)CrossRefADSGoogle Scholar
  2. 2.
    D.J. Cook, R.M. Hochstrasser, Opt. Lett. 25, 1210 (2000)CrossRefADSGoogle Scholar
  3. 3.
    C. Fotakis, D. Anglos, V. Zafiropulos, S. Georgiou, V. Tornari, Lasers in the Preservation of Cultural Heritage: Principles and Applications (Taylor & Francis, New York, 2006)Google Scholar
  4. 4.
    C. Cennini, The Crafstman’s Handbook, Translation of Il’Libro dell’Arte (Yale University Press, New Haven, 1936)Google Scholar
  5. 5.
    D.V. Thompson Jr., The Practice of Tempera Painting (Yale University Press, New Haven, 1946)Google Scholar
  6. 6.
    R. White, J. Mills, The Organic Chemistry of Museum Objects (Butterworth Heinemann, London, 1999)Google Scholar
  7. 7.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)CrossRefADSGoogle Scholar
  8. 8.
    T. Bartel, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, Opt. Lett. 30, 2805 (2005)CrossRefADSGoogle Scholar
  9. 9.
    X. Xie, J. Dai, X.-C. Zhang, Phys. Rev. Lett. 96, 075005 (2006)CrossRefADSGoogle Scholar
  10. 10.
    M. Kress, T. Löffler, S. Eden, M. Thomson, H.G. Roskos, Opt. Lett. 29, 1120 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Q. Wu, X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Q. Chen, M. Tani, Z. Jiang, X.-C. Zhang, J. Opt. Soc. Am. B 18, 823 (2000)CrossRefADSGoogle Scholar
  13. 13.
    C. Kübler, R. Huber, S. Tübel, A. Leitenstorfer, Appl. Phys. Lett. 85, 3360 (2004)CrossRefADSGoogle Scholar
  14. 14.
    M.B. Johnston, L.M. Herz, A.L.T. Khan, A. Köhler, A.G. Davies, E.H. Linfield, Chem. Phys. Lett. 377, 256 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J.-M. Manceau
    • 1
  • A. Nevin
    • 1
    • 2
  • C. Fotakis
    • 1
    • 3
  • S. Tzortzakis
    • 1
  1. 1.Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology – Hellas (FORTH)HeraklionGreece
  2. 2.Conservation of Wall Paintings DepartmentUniversity of LondonLondonUK
  3. 3.Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations