Applied Physics B

, Volume 90, Issue 3–4, pp 609–618 | Cite as

Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor

  • R. SadanandanEmail author
  • M. Stöhr
  • W. Meier


In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.


Particle Image Velocimetry Shear Layer Reaction Zone Vortical Structure Particle Image Velocimetry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Meier, P. Weigand, X.R. Duan, R. Giezendanner-Thoben, Combust. Flame 150, 2 (2007)CrossRefGoogle Scholar
  2. 2.
    K.J. Syed, E. Buchanan, Proc. ASME Turbo Expo, GT-2005-68070 (2005)Google Scholar
  3. 3.
    W. Meier, X.R. Duan, P. Weigand, Combust. Flame 144, 225 (2006)CrossRefGoogle Scholar
  4. 4.
    J.J. Keller, AIAA J. 33, 2280 (1995)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    A.H. Lefebvre, Gas Turbine Combustion (Taylor & Francis, Philadelphia, 1999)Google Scholar
  6. 6.
    T. Sattelmayer, J. Eng. Gas Turb. Power 125, 11 (2003)Google Scholar
  7. 7.
    T. Lieuwen, Turbomachinery International 44, 16 (2003)Google Scholar
  8. 8.
    N. Syred, Prog. Energ. Combust. Sci. 32, 93 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Kohse-Höinghaus, J. Jeffries (Eds.), Applied Combustion Diagnostics (Taylor & Francis, New York, 2002)Google Scholar
  10. 10.
    A.C. Eckbreth, Laser Diagnostic for Combustion Temperature and Species (Gordon and Breach, Netherlands, 1996)Google Scholar
  11. 11.
    J.J. Frank, P.A.M. Kalt, R.W. Bilger, Combust. Flame 116, 220 (1999)CrossRefGoogle Scholar
  12. 12.
    B. Böhm, D. Geyer, A. Dreizler, K.K. Venkatesan, N.M. Laurendeau, M.W. Renfro, Proc. Combust. Inst. 31, 709 (2007)CrossRefGoogle Scholar
  13. 13.
    T.R. Meyer, G.J. Fiechtner, S.P. Gogineni, J.C. Rolon, C.D. Carter, J.R. Gord, Exp. Fluids 36, 259 (2004)CrossRefGoogle Scholar
  14. 14.
    C.D. Carter, J.M. Donbar, J.F. Driscoll, Appl. Phys. B 66, 129 (1998)CrossRefADSGoogle Scholar
  15. 15.
    J.M. Donbar, J.F. Driscoll, C.D. Carter, Combust. Flame 125, 1239 (2001)CrossRefGoogle Scholar
  16. 16.
    J.E. Rehm, N.T. Clemens, Proc. Combust. Inst. 27, 1113 (1998)Google Scholar
  17. 17.
    D. Han, M.G. Mungal, Combust. Flame 132, 565 (2003)CrossRefGoogle Scholar
  18. 18.
    K.A. Watson, K.M. Lyons, J.M. Donbar, C.D. Carter, Combust. Flame 117, 257 (1999)CrossRefGoogle Scholar
  19. 19.
    J. Hult, U. Meier, W. Meier, A. Harvey, C.F. Kaminski, Proc. Combust. Inst. 30, 701 (2005)CrossRefGoogle Scholar
  20. 20.
    P. Petersson, J. Olofsson, C. Brackmann, H. Seyfried, J. Zetterberg, M. Richter, M. Alden, M.A. Linne, R.K. Cheng, A. Nauert, D. Geyer, A. Dreizler, Appl. Opt. 46, 3928 (2007)CrossRefADSGoogle Scholar
  21. 21.
    M. Tanahashi, S. Murakami, G.-M. Choi, Y. Fukuchi, T. Miyauchi, Proc. Combust. Inst. 30, 1665 (2005)CrossRefGoogle Scholar
  22. 22.
    R. Giezendanner-Thoben, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, M. Aigner, Combust. Sci. Technol. 175, 721 (2003)CrossRefGoogle Scholar
  23. 23.
    X.R. Duan, P. Weigand, W. Meier, O. Keck, B. Lehmann, W. Stricker, M. Aigner, Prog. Comput. Fluid Dynam. 4, 175 (2004)Google Scholar
  24. 24.
    W. Meier, X.R. Duan, P. Weigand, Proc. Combust. Inst. 30, 835 (2005)CrossRefGoogle Scholar
  25. 25.
    X.R. Duan, W. Meier, P. Weigand, B. Lehmann, Appl. Phys. B 80, 389 (2005)CrossRefADSGoogle Scholar
  26. 26.
    R. Giezendanner-Thoben, P. Weigand, X.R. Duan, W. Meier, U. Meier, M. Aigner, B. Lehmann, J. Eng. Gas Turb. Power 127, 492 (2005)CrossRefGoogle Scholar
  27. 27.
    P. Weigand, W. Meier, X.R. Duan, R. Giezendanner-Thoben, U. Meier, Flow Turbul. Combust. 75, 275 (2005)zbMATHCrossRefGoogle Scholar
  28. 28.
    R. Giezendanner-Thoben, U. Meier, W. Meier, M. Aigner, Flow Turbul. Combust. 75, 317 (2005)zbMATHCrossRefGoogle Scholar
  29. 29.
    R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, M. Aigner, Appl. Opt. 44, 6565 (2005)CrossRefADSGoogle Scholar
  30. 30.
    P. Weigand, W. Meier, X.R. Duan, W. Stricker, M. Aigner, Combust. Flame 144, 205 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Cao, H. Eichhoff, F. Joos, B. Simon, ASME Propulsion and Energetics, 70th Symposium, Proc. AGARD Conference 422 (1987) 8.1Google Scholar
  32. 32.
    J. Tobai, T. Dreier, J.W. Daily, J. Chem. Phys. 116, 4030 (2002)CrossRefADSGoogle Scholar
  33. 33.
    M.C. Drake, R.W. Pitz, M. Lapp, C.P. Fenimore, R.P. Lucht, D.W. Sweeney, N.M. Laurendeau, Proc. Combust. Inst. 20, 327 (1984)Google Scholar
  34. 34.
    R.S. Barlow, R.W. Dibble, J.-Y. Chen, R.P. Lucht, Combust. Flame 82, 235 (1990)CrossRefGoogle Scholar
  35. 35.
    B. Jähne, Digital Image Processing (Springer, Berlin, 2005)Google Scholar
  36. 36.
    R. Giezendanner-Thoben, PhD thesis, University of Stuttgart (2006)Google Scholar
  37. 37.
    C.J. Mueller, J.F. Driscoll, D.L. Reuss, M.C. Drake, M.E. Rosalik, Combust. Flame 112, 342 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für VerbrennungstechnikDLR StuttgartStuttgartGermany

Personalised recommendations