Applied Physics B

, Volume 90, Issue 2, pp 329–337 | Cite as

In-flight measurements of ambient methane, nitrous oxide and water using a quantum cascade laser based spectrometer

  • K.G. Hay
  • S. Wright
  • G. Duxbury
  • N. Langford


In-flight measurements of ambient methane, nitrous oxide and water have been made using frequency down-chirped radiation from a compact, pulsed, quantum-cascade laser spectrometer. In three flights from Oxford airport in October 2006 the variations of the concentration of these three trace gases could be measured and related to possible sources in the flight path.


Nitrous Oxide Water Vapour Concentration Chirp Rate Nitrous Oxide Concentration Ambient Methane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.J. Blasing, S. Jones, Current Greenhouse Gas Concentrations, Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, USAGoogle Scholar
  2. 2.
    IPCC 2001, Climate Change 2001: The Scientific Basis (Cambridge University Press, Cambridge, UK, 2002)Google Scholar
  3. 3.
    S. Wright, G. Duxbury, N. Langford, Appl. Phys. B 85, 243 (2006)CrossRefADSGoogle Scholar
  4. 4.
    G. Duxbury N. Langford, S. Wright, K. Hay, Development of the Strathclyde University QC laser spectrometer for the measurement of methane, nitrous oxide and water on the NERC ARSF Dornier Aircraft, presented at the 6th Int. Conf. on Tuneable Diode Laser Spectroscopy, Reims, France, July 2007Google Scholar
  5. 5.
    K. Hay, G. Duxbury, N. Langford, Quantum Cascade Laser Spectrometer Measurements of Atmospheric Water, Nitrous Oxide and Methane Levels, presented at the 2nd Int. Workshop on Infrared Plasma Spectroscopy, Greifswald, Germany, July 2007Google Scholar
  6. 6.
    NERC Dornier 228 Aircraft, NERC ARSF, Hangar 2, Oxford Airport, Kidlington, Oxon OX5 1RAGoogle Scholar
  7. 7.
    D.D. Nelson, J.B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta A 60, 3325 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Savitzky, M.J.E. Golay, Anal. Chem. 46, 1627 (1964)CrossRefADSGoogle Scholar
  9. 9.
    L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quantum Spectrosc. Radiat. Transf. 82, 5 (2003)Google Scholar
  10. 10.
    M.T. McCulloch, E.L. Normand, N. Langford, G. Duxbury, D.A. Newnham, J. Opt. Soc. Am. B 20, 1761 (2003)CrossRefADSGoogle Scholar
  11. 11.
    C.R. Webster, G.J. Flesch, D.C. Scott, J.E. Swanson, R.D. May, W.S. Woodward, C. Gmachl, F. Capasso, D.L. Sivko, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 321 (2001)CrossRefADSGoogle Scholar
  12. 12.
    J. Houghton, The Physics of Atmospheres (Cambridge University Press, Cambridge, UK, 2002), 3rd edn.Google Scholar
  13. 13.
    G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Mol. Phys. 105, 741 (2007)CrossRefGoogle Scholar
  14. 14.
    R.H. Dicke, Phys. Rev. 89, 472 (1953)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Scottish University Physics Alliance, Department of Physics, John Anderson BuildingUniversity of StrathclydeGlasgowUK

Personalised recommendations