Applied Physics B

, Volume 90, Issue 3–4, pp 619–628 | Cite as

CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm

Article

Abstract

A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν13 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)CrossRefADSGoogle Scholar
  2. 2.
    J.A. Silver, D.J. Kane, P.S. Greenberg, Appl. Opt. 34, 2787 (1995)ADSGoogle Scholar
  3. 3.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)CrossRefADSGoogle Scholar
  4. 4.
    R.K. Hanson, J.B. Jeffries, in 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Washington, DC (2006), AIAA-2006-3441Google Scholar
  5. 5.
    D. Richter, D.G. Lancaster, F.K. Tittle, Appl. Opt. 39, 4444 (2000)ADSGoogle Scholar
  6. 6.
    L.S. Rothman, D. Jacquemart, The 2004 edition of the HITRAN compilation, in 8th HITRAN Database Conference (Harvard-Smithsonian Center for Astrophysics, Boston, MA, 2004), p. 26Google Scholar
  7. 7.
    HITRAN web site, http://cfa-www.harvard.edu/HITRAN/Google Scholar
  8. 8.
    D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 36, 3298 (1997)ADSGoogle Scholar
  9. 9.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 36, 8745 (1997)ADSGoogle Scholar
  10. 10.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9, 327 (1998)CrossRefADSGoogle Scholar
  11. 11.
    M.E. Webber, S. Kim, S.T. Sanders, D.S. Baer, R.K. Hanson, Y. Ikeda, Appl. Opt. 40, 821 (2001)CrossRefADSGoogle Scholar
  12. 12.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 37, 8341 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Nanosystems and Technologies GmbH, http://www.nanoplus.comGoogle Scholar
  14. 14.
    A. Farooq, H. Li, J.B. Jeffries, R.K. Hanson, in AIAA 43rd Joint Propulsion Conference, Washington, DC (2007), AIAA-2007-5015Google Scholar
  15. 15.
    D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield, AIAA J. 34, 489 (1996)CrossRefADSGoogle Scholar
  16. 16.
    V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, Appl. Opt. 35, 4026 (1996)ADSGoogle Scholar
  17. 17.
    A. Goldman, R.R. Gamache, A. Perrin, J.M. Flaud, C.P. Rinsland, L.S. Rothman, J. Quant. Spectrosc. Radiat. Transf. 66, 455 (2000)CrossRefADSGoogle Scholar
  18. 18.
    E.E. Whiting, J. Quant. Spectrosc. Radiat. Transf. 16, 611 (1976)CrossRefGoogle Scholar
  19. 19.
    X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Appl. Phys. B 82, 469 (2006)CrossRefADSGoogle Scholar
  20. 20.
    M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 108, 4247 (2004)CrossRefGoogle Scholar
  21. 21.
    J.T. Herbon, R.K. Hanson, D.M. Golden, C.T. Bowman, Proc. Combust. Inst. 29, 1201 (2002)CrossRefGoogle Scholar
  22. 22.
    C.R. Shaddix, Proc. Natl. Heat Transfer Conf. 33, 282 (1999)Google Scholar
  23. 23.
    I. Glassman, Combustion (Academic, San Diego, CA, 1996)Google Scholar
  24. 24.
    C.T. Bowman, R.K. Hanson, J. Phys. Chem. 83, 757 (1979)CrossRefGoogle Scholar
  25. 25.
    R.K. Hanson, D.F. Davidson, in Handbook of Shock Waves, vol. 1, ed. by G. Ben-Dor, O. Igra, T. Elperin (Academic, San Diego, CA, 2001), Chap. 5.2Google Scholar
  26. 26.
    H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 114, 149 (1998)CrossRefGoogle Scholar
  27. 27.
    D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 36, 510 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Chaos, A. Kazakov, Z. Zhao, F.L. Dryer, Int. J. Chem. Kinet. 39, 399 (2007)CrossRefGoogle Scholar
  29. 29.
    R. Seiser, H. Pitsch, K. Seshadri, W.J. Pitz, H.J. Curran, Proc. Combust. Inst. 28, 2029 (2000)CrossRefGoogle Scholar
  30. 30.
    H. Li, Z.C. Owens, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet., in pressGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations