Advertisement

Applied Physics B

, Volume 90, Issue 2, pp 201–204 | Cite as

Antimonide-based lasers and DFB laser diodes in the 2–2.7 μm wavelength range for absorption spectroscopy

  • D. Barat
  • J. Angellier
  • A. Vicet
  • Y. Rouillard
  • L. Le Gratiet
  • S. Guilet
  • A. Martinez
  • A. Ramdane
Article

Abstract

We report on Fabry–Pérot semiconductor lasers and single frequency distributed feedback lasers based on GaInAsSb/AlGaAsSb quantum wells. The laser structures were grown by molecular beam epitaxy on GaSb substrates. The devices were etched either by wet process or by inductively coupled plasma (ICP) process. Electron-beam lithography was used to deposit a metal Bragg grating on each side of the laser ridge to fabricate the DFB lasers. The devices all operate in the continuous wave regime at room temperature with a single frequency emission above 2.6 μm and good tuning properties, making them well adapted to tunable diode laser absorption spectroscopy.

Keywords

GaSb Tunable Diode Laser Absorption Spectroscopy GaSb Substrate Tuning Rate Side Mode Suppression Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 2 (2005)CrossRefGoogle Scholar
  2. 2.
    E.R.T. Kerstel, R.Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, D. Romanini, Appl. Phys. B 85, 2 (2006)CrossRefGoogle Scholar
  3. 3.
    A. Sahli, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, A. Garnache, Appl. Opt. 45, 20 (2006)Google Scholar
  4. 4.
    K. Rossner, M. Hummer, A. Benkert, A. Forchel, Physica E 30, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    Nanoplus Nanosystems and Technologies GmbH, Gerbrunn, Germany, [Online], http://www.nanoplus.comGoogle Scholar
  6. 6.
    M. Hummer, K. Rossner, T. Lehnhardt, M. Muller, A. Forchel, R. Werner, M. Fischer, J. Koeth, Electron. Lett. 42, 10 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Vicet, D.A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, A.N. Baranov, Spectrochim. Acta A 58, 11 (2002)Google Scholar
  8. 8.
    M. Kamp, J. Hofmann, F Schäfer, M. Reunhard, M. Fischer, T. Bleuel, J.P. Reithmaier, A. Forchel, Opt. Mater. , 17 (2001)Google Scholar
  9. 9.
    D. Garbuzov, L. Xu., S.R. Forrest, R. Menna, R. Martinelli, J.C. Connolly, Electron. Lett. 32, 18 (1996)CrossRefGoogle Scholar
  10. 10.
    S. Guilet, S. Bouchoule, C. Jany, C.S. Corr, P. Chabert, J. Vac. Sci. Technol. B 24, 5 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Vicet, D.A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, A.N. Baranov, IEEE Proc. Optoelectron. 150, 4 (2003)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Barat
    • 1
  • J. Angellier
    • 1
  • A. Vicet
    • 1
  • Y. Rouillard
    • 1
  • L. Le Gratiet
    • 2
  • S. Guilet
    • 2
  • A. Martinez
    • 2
  • A. Ramdane
    • 2
  1. 1.Université Montpellier 2, CNRS, UMR 5214, Institut d’Electronique du Sud (IES)Montpellier Cedex 05France
  2. 2.CNRS UPR 020, Laboratoire de Photonique et de Nanostructures (LPN)MarcoussisFrance

Personalised recommendations