Advertisement

Applied Physics B

, Volume 89, Issue 4, pp 475–481 | Cite as

Doppler-free spectroscopy of weak transitions: An analytical model applied to formaldehyde

  • M. Zeppenfeld
  • M. Motsch
  • P.W.H. Pinkse
  • G. Rempe
Article

Abstract

Experimental observation of Doppler-free signals for weak transitions can be greatly facilitated by an estimate for their expected amplitudes. We have derived an analytical model which allows the Doppler-free amplitude to be estimated for small Doppler-free signals. Application of this model to formaldehyde allows the amplitude of experimentally observed Doppler-free signals to be reproduced to within the experimental error.

Keywords

Laser Beam Laser Power Pressure Dependence Beam Radius Weak Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.E. Lamb, Phys. Rev. 134, A1429 (1964)CrossRefADSGoogle Scholar
  2. 2.
    A. Szöke, A. Javan, Phys. Rev. Lett. 10, 521 (1963)CrossRefADSGoogle Scholar
  3. 3.
    R.A. McFarlane, W.R. Bennett Jr., W.E. Lamb Jr., Appl. Phys. Lett. 2, 189 (1963)CrossRefADSGoogle Scholar
  4. 4.
    S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)CrossRefADSGoogle Scholar
  5. 5.
    T. Rieger, T. Junglen, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 95, 173002 (2005)CrossRefADSGoogle Scholar
  6. 6.
    G.H. Dieke, G.B. Kistiakowsky, Phys. Rev. 45, 4 (1934)CrossRefADSGoogle Scholar
  7. 7.
    G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold Company, New York, 1966)Google Scholar
  8. 8.
    D.J. Clouthier, D.A. Ramsay, Ann. Rev. Phys. Chem. 34, 31 (1983)CrossRefGoogle Scholar
  9. 9.
    F.D. Pope, C.A. Smith, M.N.R. Ashfold, A.J. Orr-Ewing, Phys. Chem. Chem. Phys. 7, 79 (2005)CrossRefGoogle Scholar
  10. 10.
    P.R. Berman, Appl. Phys. 6, 283 (1975)CrossRefADSGoogle Scholar
  11. 11.
    S.N. Jabr, W.R. Bennett, Phys. Rev. A 21, 1518 (1980)CrossRefADSGoogle Scholar
  12. 12.
    M.R. Spiegel, J. Liu, Mathematical Handbook of Formulas and Tables (McGraw-Hill, USA, 1998) 2nd edn.Google Scholar
  13. 13.
    C. Moore, J. Weisshaar, Ann. Rev. Phys. Chem. 34, 525 (1983)CrossRefGoogle Scholar
  14. 14.
    At longer wavelengths, saturation spectroscopy can be done directly in the laser cavity, as e.g., in: R.L. Barger, J.L. Hall, Phys. Rev. Lett. 22, 4 (1969)Google Scholar
  15. 15.
    G.C. Bjorklund, Opt. Lett. 5, 15 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B 32, 145 (1983)CrossRefADSGoogle Scholar
  17. 17.
    M. Motsch, M. Schenk, M. Zeppenfeld, M. Schmitt, W.L. Meerts, P.W.H. Pinkse, G. Rempe, in preparationGoogle Scholar
  18. 18.
    W.L. Meerts, M. Schmitt, Int. Rev. Phys. Chem. 25, 353 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Zeppenfeld
    • 1
  • M. Motsch
    • 1
  • P.W.H. Pinkse
    • 1
  • G. Rempe
    • 1
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations