Advertisement

Applied Physics B

, Volume 89, Issue 4, pp 431–438 | Cite as

A freely falling magneto-optical trap drop tower experiment

  • T. KönemannEmail author
  • W. Brinkmann
  • E. Göklü
  • C. Lämmerzahl
  • H. Dittus
  • T. van Zoest
  • E.M. Rasel
  • W. Ertmer
  • W. Lewoczko-Adamczyk
  • M. Schiemangk
  • A. Peters
  • A. Vogel
  • G. Johannsen
  • S. Wildfang
  • K. Bongs
  • K. Sengstock
  • E. Kajari
  • G. Nandi
  • R. Walser
  • W.P. Schleich
Article

Abstract

We experimentally demonstrate the possibility of preparing ultracold atoms in the environment of weightlessness at the earth-bound short-term microgravity laboratory Drop Tower Bremen, a facility of ZARM – University of Bremen. Our approach is based on a freely falling magneto-optical trap (MOT) drop tower experiment performed within the ATKAT collaboration (“Atom-Catapult”) as a preliminary part of the QUANTUS pilot project (“Quantum Systems in Weightlessness”) pursuing a Bose–Einstein condensate (BEC) in microgravity at the drop tower [1, 2].

Furthermore we give a complete account of the specific drop tower requirements to realize a compact and robust setup for trapping and cooling neutral rubidium 87Rb atoms in microgravity conditions. We also present the results of the first realized freely falling MOT and further accomplished experiments during several drops.

The goal of the preliminary ATKAT pilot project is to initiate a basis for extended atom-optical experiments which aim at realizing, observing and investigating ultracold quantum matter in microgravity.

Keywords

Drop Tower Gate Sensor Drop Tube Master Laser Ultra High Vacuum Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vogel, M. Schmidt, K. Sengstock, K. Bongs, W. Lewoczko, T. Schuldt, A. Peters, T. van Zoest, W. Ertmer, E.M. Rasel, T. Steinmetz, J. Reichel, T. Könemann, W. Brinkmann, E. Göklü, C. Lämmerzahl, H. Dittus, G. Nandi, R. Walser, W.P. Schleich, Appl. Phys. B 84, 663 (2006)CrossRefADSGoogle Scholar
  2. 2.
    G. Nandi, R. Walser, E. Kajari, W.P. Schleich, arXiv:cond-mat/0610637v1 (2006)Google Scholar
  3. 3.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)CrossRefADSGoogle Scholar
  4. 4.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)CrossRefADSGoogle Scholar
  5. 5.
    P. Laurent, P. Lemonde, E. Simon, G. Santorelli, A. Clairon, N. Dimarcq, P. Petit, C. Audoin, C. Salomon, Eur. Phys. J. D 3, 201 (1998)ADSGoogle Scholar
  6. 6.
    S.R. Jefferts, T.P. Heavner, L.W. Hollberg, J. Kitching, D.M. Meekhof, T.E. Parker, W. Phillips, S. Rolston, H.G. Robinson, J.H. Shirley, D.B. Sullivan, F.L. Walls, N. Ashby, W.M. Klipstein, L. Maleki, D. Seidel, R. Thompson, S. Wu, L. Young, R.F.C. Vessot, A. De Marchi, Joint Meet. Eur. Freq. Time Forum and The IEEE Int. Freq. Contr. Symp., Besançon, France, April (1999), pp. 141–144Google Scholar
  7. 7.
    C. Fertig, K. Gibble, IEEE/EIA Int. Freq. Contr. Symp., Kansas City, MO, June (2000), pp. 676–679Google Scholar
  8. 8.
    G. Varoquaux, N. Zahzam, W. Chaibi, J. Clément, O. Carraz, J. Brantut, R.A. Nyman, F.P. Dos Santos, L. Mondin, M. Rouzé, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, arXiv:0705.2922v2 (2007)Google Scholar
  9. 9.
    B. Lounis, J. Reichel, C. Salomon, CR Acad. Sci. 316, 739 (1993)Google Scholar
  10. 10.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, Berlin Heidelberg New York, 1999)Google Scholar
  11. 11.
    J.E. Caroll, J.E.A. Whiteaway, R.G.S. Plumb, D. Plumb, Distributed Feedback Semiconductor Lasers (IEE, Redwood Books, Trowbridge, NJ, 1998)Google Scholar
  12. 12.
    G. Wasik, W. Gawlik, J. Zachorowski, W. Zawadzki, Appl. Phys. B 75, 613 (2002)CrossRefADSGoogle Scholar
  13. 13.
    J.H. Shirley, Opt. Lett. 7, 537 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    J. Zhang, D. Wei, C. Xie, K. Peng, Opt. Express 11, 1338 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • T. Könemann
    • 1
    Email author
  • W. Brinkmann
    • 1
  • E. Göklü
    • 1
  • C. Lämmerzahl
    • 1
  • H. Dittus
    • 1
  • T. van Zoest
    • 2
  • E.M. Rasel
    • 2
  • W. Ertmer
    • 2
  • W. Lewoczko-Adamczyk
    • 3
  • M. Schiemangk
    • 3
  • A. Peters
    • 3
  • A. Vogel
    • 4
  • G. Johannsen
    • 4
  • S. Wildfang
    • 4
  • K. Bongs
    • 4
  • K. Sengstock
    • 4
  • E. Kajari
    • 5
  • G. Nandi
    • 5
  • R. Walser
    • 5
  • W.P. Schleich
    • 5
  1. 1.ZARMUniversity of BremenBremenGermany
  2. 2.Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
  3. 3.Institute of PhysicsHumboldt University of BerlinBerlinGermany
  4. 4.Institute of Laser-PhysicsUniversity of HamburgHamburgGermany
  5. 5.Institute of Quantum PhysicsUniversity of UlmUlmGermany

Personalised recommendations