Applied Physics B

, Volume 89, Issue 4, pp 499–505 | Cite as

Implementation and characterization of active feed-forward for deterministic linear optics quantum computing

  • P. Böhi
  • R. PrevedelEmail author
  • T. Jennewein
  • A. Stefanov
  • F. Tiefenbacher
  • A. Zeilinger


In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.


Cluster State Pockels Cell Input Polarization Switching Logic Capacitive Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)CrossRefADSGoogle Scholar
  2. 2.
    R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)CrossRefADSGoogle Scholar
  3. 3.
    M. Nielsen, Phys. Rev. Lett. 93, 040503 (2004)CrossRefADSGoogle Scholar
  4. 4.
    D.E. Browne, T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005)CrossRefADSGoogle Scholar
  5. 5.
    P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Nature 434, 169 (2005)CrossRefADSGoogle Scholar
  6. 6.
    M. Tame, R. Prevedel, M. Paternostro, P. Böhi, M.S. Kim, A. Zeilinger, Phys. Rev. Lett. 98, 140501 (2007)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    N. Kiesel, Ch. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, H. Weinfurter, Phys. Rev. Lett. 95, 210502 (2005)Google Scholar
  8. 8.
    R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, Nature 445, 65 (2007)CrossRefADSGoogle Scholar
  9. 9.
    S. Giacomini, F. Sciarrino, E. Lombardi, F. De Martini, Phys. Rev. A 66, 030302 (2002)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, A. Zeilinger, Nature 430, 849 (2004)CrossRefADSGoogle Scholar
  11. 11.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)CrossRefADSGoogle Scholar
  12. 12.
    M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Oseri, D.J. Wineland, Nature 429, 737 (2004)CrossRefADSGoogle Scholar
  13. 13.
    M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, R. Blatt, Nature 429, 734 (2004)CrossRefADSGoogle Scholar
  14. 14.
    E. Hecht, Optics (Addison Wesley, Reading, MA, 1975)Google Scholar
  15. 15.
    P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y.H. Shih, Phys. Rev. Lett. 75, 4337 (1995)CrossRefADSGoogle Scholar
  16. 16.
    C.-Y. Lu, X.-Q. Zhou, O. Guhne, W. Bo Gao, J. Zhang, Z. Sheng Yuan, A. Goebel, T. Yang, J.-W. Pan, Nature Phys. 3, 91 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Böhi
    • 1
  • R. Prevedel
    • 1
    Email author
  • T. Jennewein
    • 2
  • A. Stefanov
    • 2
  • F. Tiefenbacher
    • 2
  • A. Zeilinger
    • 1
    • 2
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Institute for Quantum Optics and Quantum Information (IQOQI)Austrian Academy of SciencesViennaAustria

Personalised recommendations