Applied Physics B

, Volume 90, Issue 1, pp 141–148 | Cite as

Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses

  • J. Zhou
  • J.K. ChenEmail author
  • Y. Zhang


A theoretical model based on the rate equation for free electron density is proposed to investigate transient progression of plasma formation in soft biological tissues during laser shock processing. The laser focusing region around the focus point is considered to be one-dimensional along the direction of the incident beam, and is discretized into numerous thin control volumes. In simulation of the transient plasma progression, the laser intensity distribution and the temporal evolution of the free electron density are calculated sequentially for each control volume using a fourth-order Runge–Kutta method with adaptive time step control. The rate-equation formalism is first validated with previously published theoretical and experimental results. Simulation of the dynamics of plasma formation is then performed. The results include temporal evolution and spatial distribution of the free electron density as well as the growth of the plasma. It is shown that the threshold laser intensity for optical breakdown in water and the maximum length of the resulting plasma obtained from the present model are in good agreement with existing experimental data.


Control Volume Laser Intensity Plasma Formation Multiphoton Ionization Optical Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.F. Steinert, C.A. Puliafito, The Nd:YAG Laser in Ophthalmology (Saunders, Philadelphia, PA, 1985)Google Scholar
  2. 2.
    A. Vogel, Phys. Med. Biol. 42, 895 (1997)CrossRefGoogle Scholar
  3. 3.
    G.M. Watson, S. Murray, S.P. Dretler, J.A. Parrish, J. Urol. 138, 195 (1987)Google Scholar
  4. 4.
    M.R. Prince, G.M. LaMuraglia, P. Teng, T.F. Deutsch, R.R. Anderson, IEEE J. Quantum Electron. QE-23, 1783 (1987)CrossRefADSGoogle Scholar
  5. 5.
    B. Zysset, J.G. Fujimoto, T.F. Deutsch, Appl. Phys. B 48, 139 (1989)CrossRefADSGoogle Scholar
  6. 6.
    J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel, J. Appl. Phys. 83, 7488 (1998)CrossRefADSGoogle Scholar
  7. 7.
    C.B. Schaffer, N. Nishimura, E.N. Glezer, A.M.T. Kim, E. Mazur, Opt. Express 10, 196 (2002)ADSGoogle Scholar
  8. 8.
    T. Tomaru, H.J. Geschwind, G. Boussignac, F. Lange, S.J. Tahk, Am. Heart J. 123, 896 (1992)Google Scholar
  9. 9.
    A.G. Doukas, D.J. McAucliff, T.J. Flotte, Ultrasound Med. Biol. 19, 137 (1993)Google Scholar
  10. 10.
    T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, W.E. Bron, Lasers Surg. Med. 19, 23 (1996)Google Scholar
  11. 11.
    J. Noack, A. Vogel, Appl. Opt. 37, 4092 (1998)ADSGoogle Scholar
  12. 12.
    R. Petkovšek, J. Možina, G. Moènik, Opt. Express 13, 4107 (2005)CrossRefADSGoogle Scholar
  13. 13.
    R. Petkovšek, G. Moènik, J. Možina, Fluid Phase Equil. 256, 158 (2007)Google Scholar
  14. 14.
    C.B. Schaffer, N. Nishimura, E.N. Glezer, E. Mazur, Proc. SPIE 3269, 36 (1998)CrossRefADSGoogle Scholar
  15. 15.
    A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)CrossRefADSGoogle Scholar
  16. 16.
    S.J. Gitomer, R.D. Jones, IEEE Trans. Plasma Sci. 19, 1209 (1991)CrossRefADSGoogle Scholar
  17. 17.
    M.H. Niemz, Laser–Tissue Interactions: Fundamentals and Applications (Springer, Berlin, 2002)Google Scholar
  18. 18.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)CrossRefGoogle Scholar
  19. 19.
    F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004)Google Scholar
  20. 20.
    A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81, 1015 (2005)CrossRefADSGoogle Scholar
  21. 21.
    K. Nahen, A. Vogel, IEEE J. Sel. Top. Quantum Electron. 2, 861 (1996)CrossRefGoogle Scholar
  22. 22.
    F. Docchio, P. Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27, 3661 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    F. Docchio, P. Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27, 3669 (1988)ADSGoogle Scholar
  24. 24.
    P.K. Kennedy, IEEE J. Quantum Electron. QE-31, 2241 (1995)CrossRefADSGoogle Scholar
  25. 25.
    P.K. Kennedy, S.A. Boppart, D.X. Hammer, B.A. Rockwell, G.D. Noojin, W.P. Roach, IEEE J. Quantum Electron. QE-31, 2250 (1995)CrossRefADSGoogle Scholar
  26. 26.
    A. Sollier, L. Berthe, R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001)CrossRefADSGoogle Scholar
  27. 27.
    A. Vogel, J. Noack, G. Hüttmann, G. Paltauf, Proc. SPIE 4633, 23 (2002)CrossRefADSGoogle Scholar
  28. 28.
    J. Noack, A. Vogel, IEEE J. Quantum Electron. QE-35, 1156 (1999)CrossRefADSGoogle Scholar
  29. 29.
    F. Docchio, C.A. Sachhi, J. Marshall, Lasers Ophthalmol. 1, 83 (1986)Google Scholar
  30. 30.
    A.E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986)Google Scholar
  31. 31.
    A. Vogel, K. Nahen, D. Theisen, J. Noack, IEEE J. Sel. Top. Quantum Electron. 2, 847 (1996)CrossRefGoogle Scholar
  32. 32.
    D. Horvat, R. Petkovšek, J. Možina, Appl. Phys. B 88, 463 (2007)CrossRefADSGoogle Scholar
  33. 33.
    F. Docchio, Europhys. Lett. 6, 407 (1988)CrossRefADSGoogle Scholar
  34. 34.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Fannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, UK, 1992)Google Scholar
  35. 35.
    G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)CrossRefADSGoogle Scholar
  36. 36.
    A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Appl. Phys. B 68, 271 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations