Applied Physics B

, Volume 89, Issue 4, pp 565–572 | Cite as

High order dispersion control for femtosecond CPA lasers

  • K. OsvayEmail author
  • K. Varjú
  • G. Kurdi


Taking advantage of the temperature dependence of the refractive index, an arrangement is proposed for thermal control of dispersion of a chirped pulse amplification (CPA) laser. A glass slab, inserted into the Fourier plane of a stretcher or a compressor, having a spatially varying temperature profile across the beam ensures continuous variation of the spectral phase shift of the pulses. Model calculations are carried out to investigate the feasibility of the arrangement. As a demonstration, simple temperature profiles are created which compensate for the material dispersion of the thermal slab. In a proof of principle experiment it is proved that changes of spectral phase of femtosecond pulses follow the spatially varying temperature profile of a BK7 slab inserted into the compressor of a CPA system. Such a thermal slab is lossless, has a large spectral range, introduces no pixellation and exhibits a high damage threshold. Since it is easy to build into either the stretcher or the compressor of existing CPA lasers, it may become a promising candidate for high order dispersion compensation of high-power femtosecond laser systems.


Laser System Spectral Phase Temporal Shape Carrier Envelope Phase Fourier Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Backus, C.G. Durfee, M.M. Murnane, H.C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998)CrossRefADSGoogle Scholar
  2. 2.
    S.-W. Bahk, P. Rousseau, T.A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G.A. Mourou, V. Yanovsky, Appl. Phys. B 80, 823 (2005)CrossRefADSGoogle Scholar
  3. 3.
    M. Pittman, S. Ferre, J.P. Rousseau, L. Notebaert, J.P. Chambaret, G. Cheriaux, Appl. Phys. B 74, 529 (2002)CrossRefADSGoogle Scholar
  4. 4.
    M.P. Kalashnikov, V. Karpov, H. Schoennagel, W. Sandner, Laser Phys. 12, 368 (2002)Google Scholar
  5. 5.
    C.N. Danson, P.A. Brummitt, R.J. Clarke, J.L. Collier, B.A. Fell, J. Frackiewicz, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M.H.R. Hutchinson, A. Kidd, W.J. Lester, I.O. Musgrave, D. Neely, D.R. Neville, P.A. Norreys, D.A. Pepler, C.J. Reason, W. Shaikh, T.B. Winstone, R.W.W. Wyatt, B.E. Wyborn, Laser Part. Beams 23, 87 (2005)CrossRefADSGoogle Scholar
  6. 6.
    M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyama, Opt. Lett. 28, 1594 (2003)CrossRefADSGoogle Scholar
  7. 7. Scholar
  8. 8.
    V.V. Lozhkarev, G.I. Freidman, V.N. Ginzburg, E.V. Katin, E.A. Khazanov, A.V. Kirsanov, G.A. Luchinin, A.N. Mal’shakov, M.A. Martyanov, O.V. Palashov, A.K. Poteomkin, A.M. Sergeev, A.A. Shaykin, I.V. Yakovlev, S.G. Garanin, S.A. Sukharev, N.N. Rukavishnikov, A.V. Charukhchev, R.R. Gerke, V.E. Yashin, Opt. Express 14, 446 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Extreme Light Infrastructure (ELI), Scholar
  10. 10.
    Petawatt Field Synthesizer (PFS), http://www.attoworld.deGoogle Scholar
  11. 11.
    H.S. Peng, X.J. Huang, Q.H. Zhu, X.D. Wang, K.N. Zhou, X.F. Wei, X.M. Zeng, L.Q. Liu, X. Wang, Y. Guo, Laser Phys. 16, 1 (2006)CrossRefGoogle Scholar
  12. 12.
    G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)CrossRefADSGoogle Scholar
  13. 13.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)Google Scholar
  14. 14.
    I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, J.L. Collier, Opt. Commun. 144, 125 (1997)CrossRefADSGoogle Scholar
  15. 15.
    I.N. Ross, P. Matousek, G.H.C. New, K. Osvay, J. Opt. Soc. Am. B 19, 2945 (2002)ADSGoogle Scholar
  16. 16.
    B. Edlén, Metrologia 2, 71 (1966)CrossRefADSGoogle Scholar
  17. 17.
    K. Osvay, A. Börzsönyi, A.P. Kovács, M. Görbe, G. Kurdi, M.P. Kalashnikov, Appl. Phys. B 87, 457 (2007)CrossRefADSGoogle Scholar
  18. 18.
    F. Lindner, G.G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, IEEE J. Quantum Electron. QE-38, 1465 (2002)CrossRefADSGoogle Scholar
  19. 19.
    A. Antonetti, F. Blasco, J.P. Chambaret, G. Cheriaux, G. Darpentigny, C. Le Blanc, P. Rousseau, S. Ranc, G. Rey, F. Salin, Appl. Phys. B 65, 197 (1997)CrossRefADSGoogle Scholar
  20. 20.
    S. Kane, J. Squier, J. Opt. Soc. Am. B 14, 1237 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)CrossRefADSGoogle Scholar
  22. 22.
    R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank, Opt. Lett. 12, 483 (1987)ADSGoogle Scholar
  23. 23.
    S. Kane, J. Squier, J.V. Rudd, G. Mourou, Opt. Lett. 19, 1876 (1994)ADSGoogle Scholar
  24. 24.
    C.M.G. Inchauspe, O.E. Martinez, Opt. Lett. 22, 1186 (1997)ADSGoogle Scholar
  25. 25.
    K. Osvay, I.N. Ross, Opt. Commun. 105, 271 (1994)CrossRefADSGoogle Scholar
  26. 26.
    C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, A. Migus, IEEE J. Quantum Electron. QE-30, 1662 (1994)CrossRefADSGoogle Scholar
  27. 27.
    C.M. González Inchauspe, O.E. Martínez, J. Opt. Soc. Am. B 14, 2696 (1997)ADSGoogle Scholar
  28. 28.
    M. Divoký, P. Straka, P. Böhm, in CLEO/Europe-EQEC 2005, Munich, Germany, 12–17 June 2005, paper CG-9-TUEGoogle Scholar
  29. 29.
    H. Takada, M. Kakehata, K. Torizuka, Appl. Phys. B 74(Suppl.), S253 (2002)CrossRefADSGoogle Scholar
  30. 30.
    J. Jiang, Z. Zhang, T. Hasama, J. Opt. Soc. Am. B 19, 678 (2002)CrossRefADSGoogle Scholar
  31. 31.
    S. Kane, J. Squier, J. Opt. Soc. Am. B 14, 661 (1997)ADSGoogle Scholar
  32. 32.
    R. Szipocs, A. Kohazi-Kis, Appl. Phys. B 65, 115 (1997)CrossRefADSGoogle Scholar
  33. 33.
    F.X. Kartner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, Opt. Lett. 22, 831 (1997)ADSGoogle Scholar
  34. 34.
    P. Tournois, Opt. Commun. 140, 245 (1997)CrossRefADSGoogle Scholar
  35. 35.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Opt. Lett. 25, 575 (2000)CrossRefADSGoogle Scholar
  36. 36.
    F. Verluise, V. Laude, J.-P. Huignard, P. Tournois, A. Migus, J. Opt. Soc. Am. B 17, 138 (2000)CrossRefADSGoogle Scholar
  37. 37.
    P. Maák, G. Kurdi, A. Barócsi, K. Osvay, A.P. Kovács, L. Jakab, P. Richter, Appl. Phys. B 82, 283 (2006)CrossRefADSGoogle Scholar
  38. 38.
    M.P. Kalashnikov, K. Osvay, Proc. SPIE 5975, 125 (2006)Google Scholar
  39. 39.
    K. Osvay, A.P. Kovács, G. Kurdi, Z. Heiner, M. Divall, J. Klebniczki, I.E. Ferincz, Opt. Commun. 248, 201 (2005)CrossRefADSGoogle Scholar
  40. 40.
    G. Pretzler, A. Kasper, K.J. Witte, Appl. Phys. B 70, 1 (2000)CrossRefADSGoogle Scholar
  41. 41.
    K.-H. Hong, B. Hou, J.A. Nees, E. Power, G.A. Mourou, Appl. Phys. B 81, 447 (2005)CrossRefADSGoogle Scholar
  42. 42.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)CrossRefADSGoogle Scholar
  43. 43.
    B. Rózsa, G. Katona, E.S. Vizi, Z. Várallyay, A. Sághy, L. Valenta, P. Maák, J. Fekete, Á. Bányász, R. Szipõcs, Appl. Opt. 46, 1860 (2007)Google Scholar
  44. 44.
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000)CrossRefADSGoogle Scholar
  45. 45.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998)CrossRefADSGoogle Scholar
  46. 46.
    E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murname, G. Mourou, H. Kapteyn, G. Vdovin, Opt. Lett. 24, 493 (1999)ADSGoogle Scholar
  47. 47.
    A. Baltuska, T. Kobayashi, Appl. Phys. B 75, 427 (2002)CrossRefADSGoogle Scholar
  48. 48.
    E. Zeek, R. Bartels, M.M. Murnane, H.C. Kapteyn, S. Backus, G. Vdovin, Opt. Lett. 25, 587 (2000)CrossRefADSGoogle Scholar
  49. 49.
    F. Druon, G. Cheriaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, J.C. Chanteloup, G. Vdovin, Opt. Lett. 23, 1043 (1998)ADSGoogle Scholar
  50. 50.
    M.R. Armstrong, P. Plachta, E.A. Ponomarev, R.J.D. Miller, Opt. Lett. 26, 1152 (2001)CrossRefADSGoogle Scholar
  51. 51.
    K. Osvay, P. Dombi, A.P. Kovacs, Z. Bor, Appl. Phys. B 75, 649 (2002)CrossRefADSGoogle Scholar
  52. 52.
    A.M. Weiner, D.E. Leaird, J.S. Patel, J.R. Wullert, IEEE J. Quantum Electron. QE-28, 908 (1992)CrossRefADSGoogle Scholar
  53. 53.
    S. Postma, P. van der Walle, H.L. Offerhaus, N.F. van Hulstc, Rev. Sci. Instrum. 76, 123105 (2005)CrossRefADSGoogle Scholar
  54. 54.
    Z.L. Cao, Q.Q. Mu, L.F. Hu, Y.G. Liu, L. Xuan, J. Opt. A 9, 427 (2007)ADSGoogle Scholar
  55. 55.
    J.C. Vaughan, T. Feurer, K.W. Stone, K.A. Nelson, Opt. Express 14, 1314 (2006)CrossRefADSGoogle Scholar
  56. 56.
    F.M. Reinert, M. Nick, W. Lüthy, T. Feurer, Opt. Express 15, 4372 (2007)CrossRefADSGoogle Scholar
  57. 57.
    C. Dorrer, F. Salin, F. Verluise, J.P. Huignard, Opt. Lett. 23, 709 (1998)ADSGoogle Scholar
  58. 58.
    ‘Optical Glass’ Schott catalog, Scholar
  59. 59.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, London, 1996)Google Scholar
  60. 60.
    K. Osvay, A.P. Kovács, Z. Heiner, M. Csatári, Z. Bor, G. Kurdi, M. Görbe, J. Klebniczki, I.E. Ferincz, in CLEO/Europe-EQEC 2005, Munich, Germany, 12–17 June 2005, paper CG-13-TUEGoogle Scholar
  61. 61.
    J.K. Ranka, A.L. Gaeta, A. Baltuska, M.S. Pshenichnikov, D.A. Wiersma, Opt. Lett. 22, 1344 (1997)ADSGoogle Scholar
  62. 62.
    A.P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, Z. Bor, Appl. Phys. B 80, 165 (2005)CrossRefADSGoogle Scholar
  63. 63.
    A. Börzsönyi, A.P. Kovács, M. Görbe, K. Osvay, submitted to Opt. Commun.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Max Born Institute for Nonlinear Optics and Ultrafast SpectroscopyBerlinGermany
  3. 3.HAS Research Group on Laser PhysicsUniversity of SzegedSzegedHungary

Personalised recommendations