Applied Physics B

, Volume 89, Issue 4, pp 573–577

Nanofocusing of light energy by ridged metal heterostructures

Article

Abstract

With regard to thin Ag and Al films of the same thickness, the phase velocity of surface plasmon polaritons (SPPs) on the Ag surface is smaller than that on the Al surface. We have designed a ridged metal heterostructure (RMH) for nanofocusing of light energy. Finite difference time domain simulations reveal that the RMHs constructed with both the Ag and Al films can result in giant local field enhancement, instead of around the sharp corners, as the triangular metal nanocrystals constructed with a homogeneous metal material do, in the middle part of the structures. Further assembly of the RMHs can construct interesting nanoantennas and array probes, implying potential applications of the RMHs in nanophotonics and biophotonics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefGoogle Scholar
  2. 2.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)CrossRefADSGoogle Scholar
  3. 3.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys. Condens. Matter 14, R597 (2002)CrossRefADSGoogle Scholar
  4. 4.
    L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645 (1997)CrossRefADSGoogle Scholar
  5. 5.
    E.J. Sanchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)CrossRefADSGoogle Scholar
  6. 6.
    M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)CrossRefADSGoogle Scholar
  7. 7.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Nano Lett. 4, 957 (2004)CrossRefGoogle Scholar
  8. 8.
    P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)CrossRefADSGoogle Scholar
  9. 9.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)CrossRefADSGoogle Scholar
  10. 10.
    E. Cubukcu, E.A. Kort, K.B. Crozier, F. Capasso, Appl. Phys. Lett. 89, 093120 (2006)CrossRefGoogle Scholar
  11. 11.
    B. Wang, G.P. Wang, Appl. Phys. Lett. 85, 3599 (2004)CrossRefADSGoogle Scholar
  12. 12.
    B. Wang, G.P. Wang, Appl. Phys. Lett. 88, 013114 (2006)CrossRefADSGoogle Scholar
  13. 13.
    B. Wang, G.P. Wang, Appl. Phys. Lett. 87, 013107 (2005)CrossRefADSGoogle Scholar
  14. 14.
    G.P. Wang, B. Wang, J. Opt. Soc. Am. B 23, 1660 (2006)CrossRefADSGoogle Scholar
  15. 15.
    L. Chen, B. Wang, G.P. Wang, Appl. Phys. Lett. 89, 243120 (2006)CrossRefGoogle Scholar
  16. 16.
    R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science 294, 1901 (2001)CrossRefADSGoogle Scholar
  17. 17.
    R.C. Jin, Y.C. Cao, E. Hao, G.S.M. Traux, G.C. Schatz, C.A. Mirkin, Nature 425, 487 (2003)CrossRefADSGoogle Scholar
  18. 18.
    E. Hao, R.C. Bailey, G.C. Schatz, J.T. Hupp, S. Li, Nano Lett. 4, 327 (2004)CrossRefGoogle Scholar
  19. 19.
    E.N. Economow, Phys. Rev. B 182, 539 (1969)CrossRefADSGoogle Scholar
  20. 20.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 356 and 405, Chapt. 11Google Scholar
  21. 21.
    P.K. Tien, Phys. Rev. Mod. 49, 361 (1977)Google Scholar
  22. 22.
    G. Mur, IEEE Trans. Electromagn. Compat. 40, 100 (1998)Google Scholar
  23. 23.
    K. Tazuko, M. Shintaro, M. Yoshiteru, K. Kunio, T. Akira, Chin. Phys. Lett. 24, 2827 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Key Laboratory of Acoustic and Photonic Materials and Devices, Ministry of Education and Department of PhysicsWuhan UniversityWuhanP.R. China

Personalised recommendations