Applied Physics B

, Volume 90, Issue 1, pp 47–53 | Cite as

Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy

Article

Abstract

High-pulse-energy supercontinuum radiation with a width exceeding 900 nm in the near-infrared spectral region has been generated in conventional single-mode fibre. The fibre was pumped at 1064 nm which is in the normal dispersion regime, resulting in predominantly red-shifted spectral broadening. Supercontinuum pulse energies exceeding 450 nJ were obtained. The use of conventional fibre allows for inexpensive generation of near-infrared supercontinuum radiation, featuring high pulse energies and good spatial beam quality. This supercontinuum radiation was used to acquire high-resolution (15 pm) broadband absorption spectra of H2O, C2H2 and C2H4 in the near-infrared spectral region (1340–1700 nm), using an optical spectrum analyser for detection. H2O spectra were also recorded at high repetition rates, by dispersing the supercontinuum pulses and detecting the transmitted signal in the time domain. A spectral resolution of 38 pm was obtained employing the dispersed supercontinuum pulses, which is comparable to the H2O line widths at ambient conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.R. Alfano (ed.), The Supercontinuum Laser Source, 2nd edn. (Springer, New York, 2006)Google Scholar
  2. 2.
    P.V. Kelkar, F. Coppinger, A.S. Bhushan, B. Jalali, Electron. Lett. 35, 1661 (1999)CrossRefGoogle Scholar
  3. 3.
    S.T. Sanders, Appl. Phys. B 75, 799 (2002)CrossRefADSGoogle Scholar
  4. 4.
    C. Lan, A.W. Caswell, L.A. Kranendonk, S.T. Sanders, Tech. Paper 2007-01-0188, SAE International (2007)Google Scholar
  5. 5.
    M. Lehtonen, G. Genty, H. Ludvigsen, Appl. Phys. B 83, 231 (2005)CrossRefADSGoogle Scholar
  6. 6.
    F. Koch, S.V. Chernikov, J.R. Taylor, Opt. Commun. 175, 209 (2000)CrossRefADSGoogle Scholar
  7. 7.
    J. Hult, R.S. Watt, C.F. Kaminski, J. Lightwave Technol. 3, 820 (2007)CrossRefADSGoogle Scholar
  8. 8.
    I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler, Opt. Lett. 26, 608 (2001)CrossRefADSGoogle Scholar
  9. 9.
    C. Dunsby, P.M.P. Lanigan, J. McGinty, D.S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D.M. Davis, M.A.A. Neil, P.M.W. French, J. Phys. D 37, 3296 (2004)CrossRefADSGoogle Scholar
  10. 10.
    G. McConnell, Opt. Express 12, 2844 (2004)CrossRefADSGoogle Scholar
  11. 11.
    J. Chou, Y. Han, B. Jalali, Photon. Technol. Lett. 16, 1140 (2004)CrossRefGoogle Scholar
  12. 12.
    J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415 (2004)Google Scholar
  13. 13.
    S. Moon, D.Y. Kim, Opt. Express 14, 11575 (2006)CrossRefADSGoogle Scholar
  14. 14.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)CrossRefADSGoogle Scholar
  15. 15.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)CrossRefADSGoogle Scholar
  16. 16.
    I. Thomann, A. Bartels, K.L. Corwin, N.R. Newbury, L. Hollberg, S.A. Diddams, J.W. Nicholson, M.F. Yan, Opt. Lett. 28, 1368 (2003)CrossRefADSGoogle Scholar
  17. 17.
    C. Lin, R.H. Stolen, Appl. Phys. Lett. 28, 216 (1976)CrossRefADSGoogle Scholar
  18. 18.
    A.N. Gur’yanov, D.D. Gusovskii, E.M. Dianov, E.A. Zakhidov, A.Y. Katasik, Kvant. Elektron. (Moskva) 12, 799 (1985)Google Scholar
  19. 19.
    S.N. Chernikov, Y. Zhu, J.R. Taylor, Opt. Lett. 22, 5 (1997)Google Scholar
  20. 20.
    J.W. Walewski, J.A. Filipa, C.L. Hagen, S.T. Sanders, Appl. Phys. B 83, 75 (2006)CrossRefADSGoogle Scholar
  21. 21.
    L.G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 11 (1978)Google Scholar
  22. 22.
    C. Lin, V.T. Ngugen, W.G. French, Electron. Lett. 4, 25 (1978)Google Scholar
  23. 23.
    R.J. Bartula, J.W. Walewski, S.T. Sanders, Appl. Phys. B 84, 395 (2006)CrossRefADSGoogle Scholar
  24. 24.
    C. Xia, M. Kumar, O.P. Kulkarni, M.N. Islam, F.L. Terry Jr., Opt. Lett. 13, 17 (2006)Google Scholar
  25. 25.
    C.L. Hagen, J.W. Walewski, S.T. Sanders, Photon. Technol. Lett. 18, 91 (2006)CrossRefGoogle Scholar
  26. 26.
    M.G. Allen, E.R. Furlong, R.K. Hanson, Tunable diode laser sensing and combustion control, in Applied Combustion Diagnostics, ed. by K. Kohse-Hoinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002)Google Scholar
  27. 27.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic, San Diego, CA, 2007)Google Scholar
  28. 28.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)CrossRefADSGoogle Scholar
  29. 29.
    M. Bach, R. Georges, M. Herman, A. Perrin, Mol. Phys. 97, 265 (1999)CrossRefADSGoogle Scholar
  30. 30.
    A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, M. Scotoni, Appl. Phys. B 74, 273 (2002)CrossRefADSGoogle Scholar
  31. 31.
    S.T. Sanders, L. Ma, J. Jefferies, R.K. Hanson, Proc. Combust. Inst. 49, 161 (2002)Google Scholar
  32. 32.
    J. Hult, R.S. Watt, C.F. Kaminski, Opt. Express 15, 11385 (2007)CrossRefGoogle Scholar
  33. 33.
    C.L. Hagen, Fundamentals of Transient Thermal–Light Absorption Spectroscopy and Application of Optical Sensing in HCCI Engines, Chapter 2 – Optical Noise, Ph.D. (Mechanical Engineering) thesis, University of Wisconsin-Madison (2006)Google Scholar
  34. 34.
    X. Liu, J.B. Jeffries, R.K. Hanson, Am. Inst. Aeronaut. Astronaut. J. 45, 411 (2007)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations