Applied Physics B

, Volume 89, Issue 2–3, pp 367–376

Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling

  • Jun Dong
  • A. Shirakawa
  • K.-I. Ueda
  • A.A. Kaminskii
Article

Abstract

A theoretical model based on a quasi-four-level system is modified to investigate the effect of Yb concentration on performance of continuous-wave Yb:YAG microchip lasers by taking into account temperature-dependent thermal population distribution, temperature-dependent emission cross-section and concentration-dependent fluorescence lifetime, thermal loading, thermal conductivity, and thermal expansion coefficient. The local temperature rise in Yb:YAG crystal caused by the absorbed pump power plays an important role in the laser performance of Yb:YAG microchip lasers working at ambient temperature without actively cooling the sample. The output wavelengths dependent on output coupling, Yb concentration, and pump power level were analyzed quantitatively. The numerical simulation of Yb:YAG microchip lasers is in good agreement with experimental data. The optimized laser operation for Yb:YAG microchip lasers is proposed by varying the thickness and output coupling for different Yb concentrations. The effect of thermal lens, thermal deformation effect, and saturated inversion population distribution inside the Yb:YAG crystal on performance of heavy-doped Yb:YAG microchip lasers are also addressed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 365 (1994)ADSGoogle Scholar
  2. 2.
    T.S. Rutherford, W.M. Tulloch, E.K. Gustafson, R.L. Byer, IEEE J. Quantum Electron. QE-36, 205 (2000)CrossRefADSGoogle Scholar
  3. 3.
    A.A. Kaminskii, Laser Crystals (Springer, Berlin, Heidelberg, New York, 1981)Google Scholar
  4. 4.
    D.S. Sumida, T.Y. Fan, Opt. Lett. 19, 1343 (1994)ADSGoogle Scholar
  5. 5.
    G.A. Bogomolova, D.N. Vylegzhanin, A.A. Kaminskii, Sov. Phys. JETP 42, 440 (1976)ADSGoogle Scholar
  6. 6.
    T.Y. Fan, IEEE J. Quantum Electron. QE-29, 1457 (1993)CrossRefADSGoogle Scholar
  7. 7.
    H.W. Bruesselbach, D.S. Sumida, R.A. Reeder, R.W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997)CrossRefGoogle Scholar
  8. 8.
    F.D. Patel, E.C. Honea, J. Speth, S.A. Payne, R. Hutcheson, R. Equall, IEEE J. Quantum Electron. QE-37, 135 (2001)CrossRefADSGoogle Scholar
  9. 9.
    E.C. Honea, R.J. Beach, S.C. Mitchell, J.A. Sidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, D. Harris, Opt. Lett. 25, 805 (2000)CrossRefADSGoogle Scholar
  10. 10.
    C. Stewen, K. Contag, M. Larionov, A. Giessen, H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Tsunekane, T. Taira, Opt. Lett. 31, 2003 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Q. Liu, M. Gong, F. Lu, W. Gong, C. Li, D. Ma, Appl. Phys. Lett. 88, 101113 (2006)CrossRefADSGoogle Scholar
  13. 13.
    H. Bruesselbach, D.S. Sumida, IEEE J. Sel. Top. Quantum Electron. 11, 600 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Dong, A. Shirakawa, K. Ueda, A.A. Kaminskii, Appl. Phys. B 89 (2007), DOI: 10.1007/s00340-007-2796-2Google Scholar
  15. 15.
    T.Y. Fan, R.L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987)ADSGoogle Scholar
  16. 16.
    W.P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988)ADSGoogle Scholar
  17. 17.
    G.L. Bourdet, G. Lescroart, Opt. Commun. 149, 404 (1998)CrossRefADSGoogle Scholar
  18. 18.
    A.J. Alfrey, IEEE J. Quantum Electron. QE-25, 760 (1989)CrossRefADSGoogle Scholar
  19. 19.
    Z. Huang, Y. Huang, M. Huang, Z. Lou, J. Opt. Soc. Am. B 20, 2061 (2003)CrossRefADSGoogle Scholar
  20. 20.
    T. Taira, J. Saikawa, T. Kobayashi, R.L. Byer, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997)CrossRefGoogle Scholar
  21. 21.
    J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003)CrossRefADSGoogle Scholar
  22. 22.
    D.S. Sumida, T.Y. Fan, in Advanced Solid-State Lasers, ed. by T.Y. Fan, B.H.T. Chai (Optical Society of America, Washington, DC, 1994) Vol. 20, p. 100Google Scholar
  23. 23.
    W. Kochner, Solid State Laser Engineering (Springer, Berlin, 1999)Google Scholar
  24. 24.
    M.E. Innocenzi, H.T. Yura, C.L. Fincher, R.A. Fields, Appl. Phys. Lett. 56, 1831 (1990)CrossRefADSGoogle Scholar
  25. 25.
    D. Metcalf, P. De-Giovanni, J. Zachorowski, M. Leduc, Appl. Opt. 26, 4508 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Cousins, IEEE J. Quantum Electron. QE-28, 1057 (1992)CrossRefADSGoogle Scholar
  27. 27.
    H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966)Google Scholar
  28. 28.
    R. Ifflander, H.P. Kortz, H. Weber, Opt. Commun. 29, 223 (1979)CrossRefADSGoogle Scholar
  29. 29.
    G.A. Slack, D.W. Oliver, Phys. Rev. B 4, 592 (1971)CrossRefADSGoogle Scholar
  30. 30.
    T.Y. Fan, J.L. Daneu, Appl. Opt. 37, 1635 (1998)ADSGoogle Scholar
  31. 31.
    R. Wynne, J.L. Daneu, T.Y. Fan, Appl. Opt. 38, 3282 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    D.C. Brown, IEEE J. Quantum Electron. QE-33, 861 (1997)CrossRefADSGoogle Scholar
  33. 33.
    T.Y. Fan, R.L. Byer, IEEE J. Quantum Electron. QE-24, 895 (1988)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jun Dong
    • 1
  • A. Shirakawa
    • 1
  • K.-I. Ueda
    • 1
  • A.A. Kaminskii
    • 2
  1. 1.Institute for Laser ScienceUniversity of Electro-CommunicationsTokyoJapan
  2. 2.Crystal Laser Physics Laboratory, Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations