Advertisement

Applied Physics B

, Volume 89, Issue 2–3, pp 407–416 | Cite as

Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube

  • H. Li
  • A. Farooq
  • J.B. Jeffries
  • R.K. Hanson
Article

Abstract

A fast-response (100 kHz) tunable diode laser absorption sensor is developed for measurements of temperature and H2O concentration in shock tubes, e.g. for studies of combustion chemistry. Gas temperature is determined from the ratio of fixed-wavelength laser absorption of two H2O transitions near 7185.60 cm-1 and 7154.35 cm-1, which are selected using design rules for the target temperature range of 1000–2000 K and pressure range of 1–2 atm. Wavelength modulation spectroscopy is employed with second-harmonic detection (WMS-2f) to improve the sensor sensitivity and accuracy. Normalization of the second-harmonic signal by the first-harmonic signal is used to remove the need for calibration and minimize interference from emission, scattering, beam steering, and window fouling. The laser modulation depth for each H2O transition is optimized to maximize the WMS-2f signal for the target test conditions. The WMS-2f sensor is first validated in mixtures of H2O and Ar in a heated cell for the temperature range of 500–1200 K (P=1 atm), yielding an accuracy of 1.9% for temperature and 1.4% for H2O concentration measurements. Shock wave tests with non-reactive H2O–Ar mixtures are then conducted to demonstrate the sensor accuracy (1.5% for temperature and 1.4% for H2O concentration) and response time at higher temperatures (1200–1700 K, P=1.3–1.6 atm).

Keywords

Shock Tube Modulation Depth Wavelength Modulation Spectroscopy Shock Tube Experiment Absorption Line Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Glassman, Combustion (Academic, San Diego, CA, 1996)Google Scholar
  2. 2.
    C.T. Bowman, R.K. Hanson, J. Phys. Chem. 83, 757 (1979)CrossRefGoogle Scholar
  3. 3.
    R.K. Hanson, D.F. Davidson, in Handbook of Shock Waves, ed. by G. Ben-Dor, O. Igra, T. Elperin (Academic, San Diego, CA, 2001), vol. 1, Chap. 5.2Google Scholar
  4. 4.
    H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 114, 149 (1998)CrossRefGoogle Scholar
  5. 5.
    D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 36, 510 (2004)CrossRefGoogle Scholar
  6. 6.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)CrossRefADSGoogle Scholar
  7. 7.
    D. Richter, D.G. Lancaster, F.K. Tittel, Appl. Opt. 39, 4444 (2000)ADSGoogle Scholar
  8. 8.
    S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000)Google Scholar
  9. 9.
    H. Teichert, T. Fernholtz, V. Ebert, Appl. Opt. 42, 2043 (2003)CrossRefADSGoogle Scholar
  10. 10.
    D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, AIAA J. 34, 489 (1996)ADSGoogle Scholar
  11. 11.
    D.T. Cassidy, J. Reid, Appl. Opt. 21, 1185 (1982)ADSGoogle Scholar
  12. 12.
    J.A. Silver, D.J. Kane, Meas. Sci. Technol. 10, 845 (1999)CrossRefADSGoogle Scholar
  13. 13.
    L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)ADSGoogle Scholar
  14. 14.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004)CrossRefADSGoogle Scholar
  15. 15.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000)ADSGoogle Scholar
  16. 16.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)CrossRefADSGoogle Scholar
  17. 17.
    J.A. Silver, Appl. Opt. 31, 707 (1992)ADSGoogle Scholar
  18. 18.
    T. Aizawa, Appl. Opt. 40, 4894 (2001)CrossRefADSGoogle Scholar
  19. 19.
    P. Kluczynski, O. Axner, Appl. Opt. 38, 5803 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)CrossRefADSGoogle Scholar
  21. 21.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Proc. Combust. Inst. 31, 3041 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)CrossRefADSGoogle Scholar
  23. 23.
    T. Iseki, H. Tai, K. Kimura, Meas. Sci. Technol. 11, 594 (2000)CrossRefADSGoogle Scholar
  24. 24.
    R.T. Wainner, B.D. Green, M.G. Allen, M.A. White, J. Stafford-Evans, R. Naper, Appl. Phys. B 75, 249 (2002)CrossRefADSGoogle Scholar
  25. 25.
    R. Arndt, J. Appl. Phys. 36, 2522 (1965)CrossRefADSGoogle Scholar
  26. 26.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 14, 1459 (2003)CrossRefADSGoogle Scholar
  27. 27.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005)CrossRefADSGoogle Scholar
  28. 28.
    X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Appl. Phys. B 82, 469 (2006)CrossRefADSGoogle Scholar
  29. 29.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 16, 2437 (2005)CrossRefADSGoogle Scholar
  30. 30.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer Jr., C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)CrossRefADSGoogle Scholar
  31. 31.
    H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer, DOI: 10.1016/j.jqsrt.2007.05.008 (2007)Google Scholar
  32. 32.
    R.H. Dicke, Phys. Rev. 89, 472 (1953)CrossRefADSGoogle Scholar
  33. 33.
    L. Galatry, Phys. Rev. 122, 1218 (1961)zbMATHCrossRefADSGoogle Scholar
  34. 34.
    P.L. Varghese, R.K. Hanson, Appl. Opt. 23, 2376 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    G.B. Rieker, H. Li, X. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, Meas. Sci. Technol. 18, 1195 (2007)CrossRefADSGoogle Scholar
  36. 36.
    S. Song, R.K. Hanson, C.T. Bowman, D.M. Golden, Proc. Combust. Inst. 28, 2403 (2000)CrossRefGoogle Scholar
  37. 37.
    V. Vasudevan, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 109, 3352 (2005)CrossRefGoogle Scholar
  38. 38.
    X. Liu, X. Zhou, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 103, 565 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations