Applied Physics B

, Volume 89, Issue 1, pp 99–106 | Cite as

Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Pérot spectrometer and by conventional atomic absorption

  • N. Taylor
  • N. Omenetto
  • B.W. Smith
  • J.D. Winefordner
Article

Abstract

A see-through hollow cathode lamp, or galvatron, is investigated. A novel method is presented for the measurement of an atomic absorption profile using a quasi-continuum source created by the combination of two line sources and a high-resolution Fabry–Pérot interferometer coupled to a spectrometer. Number densities are calculated from the resulting absorption profiles by the peak absorption coefficient relationship and compare well with results obtained from high-resolution emission measurements. Number densities are also determined for the lead 3P1 metastable state and thallium 2P1/2o ground state by conventional atomic absorption. A hollow cathode lamp is used as an emission source and is set at a relatively low current to approximate as a line source relative to the galvatron. Due to the relative line widths of the source and absorber, only the lead metastable state results compare to results obtained by saturated fluorescence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O.I. Matveev, J. Appl. Spectrosc. (USSR) 46, 217 (1987)CrossRefADSGoogle Scholar
  2. 2.
    R.J. Krupa, G.L. Long, J.D. Winefordner, Spectrochim. Acta B 40, 1485 (1985)CrossRefADSGoogle Scholar
  3. 3.
    T. Okada, H. Andou, Y. Moriyama, M. Maeda, Opt. Lett. 14, 987 (1989)ADSGoogle Scholar
  4. 4.
    S.H. Bloom, E. Korevar, M. Rivers, C.S. Liu, Opt. Lett. 15, 294 (1990)ADSGoogle Scholar
  5. 5.
    J.P. Temirov, N.V. Chigarev, O.I. Matveev, N. Omenetto, B.W. Smith, J.D. Winefordner, Spectrochim. Acta B 59, 677 (2004)CrossRefADSGoogle Scholar
  6. 6.
    D. Pappas, N.C. Pixley, O.I. Matveev, B.W. Smith, J.D. Winefordner, Opt. Commun. 191, 263 (2001)CrossRefADSGoogle Scholar
  7. 7.
    B.W. Smith, P.B. Farnsworth, J.D. Winefordner, N. Omenetto, Opt. Lett. 15, 823 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    G.L. Long, J.D. Winefordner, Appl. Spectrosc. 38, 563 (1984)CrossRefADSGoogle Scholar
  9. 9.
    M.S. Cresser, P.N. Keliher, C.C. Wohlers, Spectry Lett. 3, 179 (1970)CrossRefADSGoogle Scholar
  10. 10.
    M.S. Cresser, P.N. Keliher, C.C. Wohlers, Anal. Chem. 45, 111 (1973)CrossRefGoogle Scholar
  11. 11.
    G.F. Kirkbright, O.E. Troccoli, Spectrochim. Acta B 28, 33 (1973)CrossRefADSGoogle Scholar
  12. 12.
    H. C Wagenaar, C.J. Pickford, L. De Galan, Spectrochim. Acta B 29, 211 (1974)CrossRefADSGoogle Scholar
  13. 13.
    A.S. Bazov, A.V. Zherebenko, J. Appl. Spectrosc. (USSR) 12, 403 (1970)Google Scholar
  14. 14.
    T.L. Correl, Ph.D. Dissertation, University of Florida, (2004)Google Scholar
  15. 15.
    J.D. Ingle Jr., S.R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988)Google Scholar
  16. 16.
    N. Taylor, N. Omenetto, B.W. Smith, J.D. Winefordner, DOI: 10.1007/s00340-007-2752-1Google Scholar
  17. 17.
    V. Horvatic, T.L. Correll, N. Omenetto, C. Vadla, J.D. Winefordner, Spectrochim. Acta B 61, 1260 (2006)CrossRefADSGoogle Scholar
  18. 18.
    G. Magerl, B.P. Oehry, W. Ehrlich-Schupita, Study of Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik Technische Universität Wien, Vienna Austria, July 1991)Google Scholar
  19. 19.
    N. Taylor, N. Omenetto, B.W. Smith, J.D. Winefordner, (submitted)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • N. Taylor
    • 1
  • N. Omenetto
    • 1
  • B.W. Smith
    • 1
  • J.D. Winefordner
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations