Applied Physics B

, Volume 88, Issue 4, pp 563–568 | Cite as

Optimization of frequency modulation transfer spectroscopy on the calcium 41 S 0 to 41 P 1 transition

  • J.F. Eble
  • F. Schmidt-KalerEmail author


We present experimental results of frequency modulation transfer spectroscopy in a vapor of neutral atomic calcium. The observed line shapes agree well with the theoretical model. We use numerical calculations in order to improve the signal shape such that its magnitude and its slope at the zero-crossing is maximized. When optimized this way, the frequency modulation transfer signal can be used for the sensitive optical detection of rare species or isotopes, Doppler-free frequency measurements or as a sensitive error signal for laser frequency stabilization.


Probe Beam Pump Beam Modulation Index Calcium Vapor Saturation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 1996)Google Scholar
  2. 2.
    C. Wieman, T.W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976)CrossRefADSGoogle Scholar
  3. 3.
    W. Kaiser, C.G. Garret, Phys. Rev. Lett. 7, 229 (1961)CrossRefADSGoogle Scholar
  4. 4.
    L.S. Ma, J.L. Hall, IEEE J. Quantum Electron. QE-26, 11 (1990)Google Scholar
  5. 5.
    L.S. Ma, P. Courteille, G. Ritter, W. Neuhauser, R. Blatt, Appl. Phys. B 57, 159 (1993)CrossRefADSGoogle Scholar
  6. 6.
    C. Raab, J. Bolle, H. Oberst, J. Eschner, F. Schmidt-Kaler, R. Blatt, Appl. Phys. B 67, 683 (1998)CrossRefADSGoogle Scholar
  7. 7.
    A.S. Zibrov, R.W. Fox, R. Ellingsen, C.S. Weimer, V.L. Velichansky, G.M. Tino, L. Hollberg, Appl. Phys. B 59, 327 (1994)CrossRefADSGoogle Scholar
  8. 8.
    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001)CrossRefADSGoogle Scholar
  9. 9.
    A. Mortensen, J.J.T. Lindballe, I.S. Jensen, P. Staanum, D. Voigt, M. Drewsen, Phys. Rev. A 69, 042502 (2004)CrossRefADSGoogle Scholar
  10. 10.
    C.J. Erickson, B. Neyenhuis, D.S. Durfee, Rev. Sci. Instrum. 760, 123110 (2005)CrossRefADSGoogle Scholar
  11. 11.
    M. Bacher, Diploma thesis, University Innsbruck, unpublished (2005)Google Scholar
  12. 12.
    J.F. Eble, Diploma thesis, University Ulm, unpublished (2006)Google Scholar
  13. 13.
    J.H. Shirley, Opt. Lett. 7, 11 (1982)CrossRefGoogle Scholar
  14. 14.
    E. Jaatinen, Opt. Commun. 120, 91 (1995)CrossRefADSGoogle Scholar
  15. 15.
    W. Hansen, J. Phys. B 16, 2309 (1983)CrossRefADSGoogle Scholar
  16. 16.
    J. Mitroy, J. Phys. B At. Mol. Opt. 26, 3703 (1993)CrossRefADSGoogle Scholar
  17. 17.
    A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984)Google Scholar
  18. 18.
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1991)Google Scholar
  19. 19.
    R. Wynands, A. Nagel, J. Opt. Soc. Am. B 16, 10 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für QuanteninformationsverarbeitungUniversität UlmUlmGermany

Personalised recommendations