Applied Physics B

, Volume 88, Issue 4, pp 519–526 | Cite as

Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation

  • P. Nuernberger
  • G. Vogt
  • R. Selle
  • S. Fechner
  • T. Brixner
  • G. Gerber
Article

Abstract

We experimentally demonstrate a method to generate shaped femtosecond laser pulses in the ultraviolet at a central wavelength of 267 nm, the third harmonic of conventional titanium-sapphire femtosecond laser systems. Employing a 128-pixel liquid-crystal spatial light modulator, we impose variable spectral phase modulations upon the near-infrared laser pulses. By this, complex laser pulses can be shaped whose overall spectrum is still conserved. Our experiments show that it is possible to easily transfer these pulses into the ultraviolet at 267 nm via sum-frequency mixing in nonlinear crystals and to predictably generate multistructured ultraviolet femtosecond laser pulses. We analyze the temporal and spectral composition of these pulses after frequency conversion into the ultraviolet using difference-frequency cross-correlation and XFROG (cross-correlation frequency-resolved optical gating) techniques with an unmodulated fundamental laser pulse. The method can be employed to facilitate adaptive quantum control experiments in the ultraviolet wavelength regime, where the major absorption bands of many organic molecular systems are located.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)CrossRefADSGoogle Scholar
  2. 2.
    A.M. Weiner, D.E. Leaird, G.P. Wiederrecht, K.A. Nelson, Science 247, 1317 (1990)CrossRefADSGoogle Scholar
  3. 3.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998)CrossRefADSGoogle Scholar
  4. 4.
    D. Meshulach, Y. Silberberg, Nature 396, 239 (1998)CrossRefADSGoogle Scholar
  5. 5.
    T. Brixner, N.H. Damrauer, P. Niklaus, G. Gerber, Nature 414, 57 (2001)CrossRefADSGoogle Scholar
  6. 6.
    R.J. Levis, G.M. Menkir, H. Rabitz, Science 292, 709 (2001)CrossRefADSGoogle Scholar
  7. 7.
    J. Herek, W. Wohlleben, R.J. Cogdell, D. Zeidler, M. Motzkus, Nature 417, 533 (2002)CrossRefADSGoogle Scholar
  8. 8.
    C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, L. Wöste, Science 299, 536 (2003)Google Scholar
  9. 9.
    G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, G. Gerber, Phys. Rev. Lett. 94, 068305 (2005)CrossRefADSGoogle Scholar
  10. 10.
    G. Vogt, P. Nuernberger, T. Brixner, G. Gerber, Chem. Phys. Lett. 433, 211 (2006)CrossRefADSGoogle Scholar
  11. 11.
    P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007)CrossRefGoogle Scholar
  12. 12.
    R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Nature 406, 164 (2000)CrossRefADSGoogle Scholar
  13. 13.
    T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, G. Gerber, Appl. Phys. B 80, 277 (2005)CrossRefADSGoogle Scholar
  14. 14.
    T. Pfeifer, R. Spitzenpfeil, D. Walter, C. Winterfeldt, F. Dimler, G. Gerber, C. Spielmann, Opt. Express 15, 3409 (2007)CrossRefADSGoogle Scholar
  15. 15.
    A.M. Weiner, Prog. Quantum Electron. 19, 161 (1995)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    A.M. Weiner, Opt. Quantum Electron. 32, 473 (2000)CrossRefGoogle Scholar
  17. 17.
    T.C. Weinacht, J. Ahn, P.H. Bucksbaum, Nature 397, 233 (1999)CrossRefADSGoogle Scholar
  18. 18.
    D. Yelin, D. Meshulach, Y. Silberberg, Opt. Lett. 22, 1793 (1997)CrossRefADSGoogle Scholar
  19. 19.
    T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, Appl. Phys. B 65, 779 (1997)CrossRefADSGoogle Scholar
  20. 20.
    H.-S. Tan, W.S. Warren, E. Schreiber, Opt. Lett. 26, 1812 (2001)CrossRefADSGoogle Scholar
  21. 21.
    C. Schriever, S. Lochbrunner, M. Optiz, E. Riedle, Opt. Lett. 31, 543 (2006)CrossRefADSGoogle Scholar
  22. 22.
    C.G. Durfee III, S. Backus, H.C. Kapteyn, M.M. Murnane, Opt. Lett. 24, 697 (1999)CrossRefADSGoogle Scholar
  23. 23.
    I.Z. Kozma, P. Baum, S. Lochbrunner, E. Riedle, Opt. Express 11, 3110 (2003)ADSGoogle Scholar
  24. 24.
    Y. Nabekawa, K. Midorikawa, Opt. Express 11, 324 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Nabekawa, K. Midorikawa, Appl. Phys. B 78, 569 (2004)CrossRefADSGoogle Scholar
  26. 26.
    P. Baum, S. Lochbrunner, E. Riedle, Appl. Phys. B 79, 1027 (2004)CrossRefADSGoogle Scholar
  27. 27.
    K. Li, U. Krishnamoorthy, J.P. Heritage, O. Solgaard, Opt. Lett. 27, 366 (2002)CrossRefADSGoogle Scholar
  28. 28.
    M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Appl. Phys. B 76, 711 (2003)ADSGoogle Scholar
  29. 29.
    M. Roth, M. Mehendale, A. Bartelt, H. Rabitz, Appl. Phys. B 80, 441 (2005)CrossRefADSGoogle Scholar
  30. 30.
    Y. Huang, A. Dogariu, Opt. Express 14, 10089 (2006)CrossRefADSGoogle Scholar
  31. 31.
    B.J. Pearson, T.C. Weinacht, Opt. Express 15, 4385 (2007)CrossRefADSGoogle Scholar
  32. 32.
    S. Coudreau, D. Kaplan, P. Tournois, Opt. Lett. 31, 1899 (2006)CrossRefADSGoogle Scholar
  33. 33.
    M. Bergt, T. Brixner, B. Kiefer, M. Strehle, G. Gerber, J. Phys. Chem. A 103, 10381 (1999)CrossRefGoogle Scholar
  34. 34.
    M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, R. Sauerbrey, Appl. Phys. B 73, 273 (2001)ADSGoogle Scholar
  35. 35.
    E. Sidick, A. Dienes, A. Knoesen, J. Opt. Soc. Am. B 12, 1713 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001)CrossRefADSGoogle Scholar
  37. 37.
    H. Wang, A.M. Weiner, IEEE J. Quantum Electron. QE-40, 937 (2004)CrossRefADSGoogle Scholar
  38. 38.
    S. Shimizu, Y. Nabekawa, M. Obara, K. Midorikawa, Opt. Express 13, 6345 (2005)CrossRefADSGoogle Scholar
  39. 39.
    M. Renard, R. Chaux, B. Lavorel, O. Faucher, Opt. Express 12, 473 (2004)CrossRefADSGoogle Scholar
  40. 40.
    P. Nuernberger et al., to be submitted (2007)Google Scholar
  41. 41.
    G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, G. Gerber, Phys. Rev. A 74, 033413 (2006)CrossRefADSGoogle Scholar
  42. 42.
    P. Marquetand, P. Nuernberger, G. Vogt, T. Brixner, V. Engel, submitted (2007)Google Scholar
  43. 43.
    M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, T. Baumert, Phys. Rev. A 73, 063409 (2006)CrossRefADSGoogle Scholar
  44. 44.
    T. Brixner, M. Strehle, G. Gerber, Appl. Phys. B 68, 281 (1999)CrossRefADSGoogle Scholar
  45. 45.
    S. Linden, H. Giessen, J. Kuhl, Phys. Stat. Solidi B 206, 119 (1998)CrossRefADSGoogle Scholar
  46. 46.
    S. Linden, J. Kuhl, H. Giessen, Opt. Lett. 24, 569 (1999)CrossRefADSGoogle Scholar
  47. 47.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic Press, San Diego, 1995)Google Scholar
  48. 48.
    G. Cerullo, C.J. Bardeen, Q. Wang, C.V. Shank, Chem. Phys. Lett. 262, 362 (1996)CrossRefADSGoogle Scholar
  49. 49.
    S.S. Bychkov, B.A. Grishanin, V.N. Zadkov, H. Takahashi, J. Raman Spectrosc. 33, 962 (2002)CrossRefADSGoogle Scholar
  50. 50.
    L. González, J. Manz, B. Schmidt, M.F. Shibl, Phys. Chem. Chem. Phys. 7, 4096 (2005)CrossRefGoogle Scholar
  51. 51.
    K. Hoki, Y. Ohtsuki, H. Kono, Y. Fujimura, J. Phys. Chem. A 103, 6301 (1999)CrossRefGoogle Scholar
  52. 52.
    D. Geppert, R. de Vivie-Riedle, Chem. Phys. Lett. 404, 289 (2005)CrossRefADSGoogle Scholar
  53. 53.
    K. B. Møller, H.C. Westtoft, N.E. Henriksen, Chem. Phys. Lett. 419, 65 (2006)CrossRefADSGoogle Scholar
  54. 54.
    P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, G. Gerber, Proc. SPIE 6187, 61870M (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Nuernberger
    • 1
  • G. Vogt
    • 1
  • R. Selle
    • 1
  • S. Fechner
    • 1
  • T. Brixner
    • 1
  • G. Gerber
    • 1
  1. 1.Physikalisches InstitutUniversität WürzburgWürzburgGermany

Personalised recommendations