Applied Physics B

, Volume 88, Issue 3, pp 397–403 | Cite as

Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer

Article

Abstract

A new method of phase retrieval from the spectral interference signal is presented, which is based on the use of a windowed Fourier transform in the wavelength domain. The phase retrieved by the method is utilized for measuring the thickness of SiO2 thin film on a silicon wafer. The numerical simulations are performed to demonstrate high precision of the phase retrieval. The feasibility of the method is confirmed in processing experimental data from a slightly dispersive Michelson interferometer with one of the mirrors replaced by SiO2 thin film on the silicon wafer. We determine the thin-film thickness for four samples provided that the optical constants for all the materials involved in the experiment are known. We confirm very good agreement with the previous results obtained by the fitting of the recorded channelled spectra to the theoretical ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 2.
    R.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)Google Scholar
  3. 3.
    G.E. Jellison Jr., Thin Solid Films 290291, 40 (1996)Google Scholar
  4. 4.
    T.M. Merklein, Appl. Opt. 29, 505 (1990)ADSGoogle Scholar
  5. 5.
    M. Kildemo, V. Dalsrud, O. Fostad, Opt. Eng. 38, 1542 (1999)CrossRefADSGoogle Scholar
  6. 6.
    S.W. Kim, G.H. Kim, Appl. Opt. 38, 5968 (1999)ADSGoogle Scholar
  7. 7.
    U. Schnell, R. Dändliker, S. Gray, Opt. Lett. 21, 528 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    T. Doi, K. Toyoda, Y. Tanimura, Appl. Opt. 36, 7157 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    A. Pförtner, J. Schwider, Appl. Opt. 40, 6223 (2001)ADSGoogle Scholar
  10. 10.
    P. Hlubina, D. Ciprian, J. Luňáček, M. Lesňák, Appl. Phys. B 84, 511 (2006)CrossRefADSGoogle Scholar
  11. 11.
    P. Hlubina, D. Ciprian, J. Luňáček, M. Lesňák, Opt. Express 14, 7678 (2006)CrossRefADSGoogle Scholar
  12. 12.
    K. Qian, Appl. Opt. 43, 2695 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Qian, Opt. Lasers Eng. 45, 304 (2007)CrossRefGoogle Scholar
  14. 14.
    Schott Computer Glass Catalog 1.0 (Schott Glasswerke, Mainz, 1992)Google Scholar
  15. 15.
    K. Postava, T. Yamaguchi, J. Appl. Phys. 89, 2189 (2001)CrossRefADSGoogle Scholar
  16. 16.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1995)Google Scholar
  17. 17.
    Optimalization Toolbox for Use with MATLAB (MathWorks, Mass, 2000)Google Scholar
  18. 18.
    P. Hlubina, I. Gurov, V. Chugunov, J. Mod. Opt. 50, 2067 (2003)ADSGoogle Scholar
  19. 19.
    J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, 2000)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Hlubina
    • 1
  • D. Ciprian
    • 1
  • J. Luňáček
    • 1
  • R. Chlebus
    • 1
  1. 1.Department of PhysicsTechnical University OstravaOstrava-PorubaCzech Republic

Personalised recommendations