Advertisement

Applied Physics B

, Volume 88, Issue 2, pp 259–265 | Cite as

Propagation of higher order Bessel–Gaussian beams in turbulence

  • H.T. EyyuboğluEmail author
Article

Abstract

The propagation characteristics of higher order Bessel–Gaussian beams travelling in turbulent atmosphere are investigated. Using extended Huygens–Fresnel principle, I formulated receiver plane intensity and solved it down to a double integral stage. Source beam plots are made illustrating the variation of intensity against order and width parameter. From the examination of receiver intensity graphs, it is seen that Bessel–Gaussian beam are converted into modified Bessel–Gaussian beams at intermediate propagation ranges eventually ending up as Gaussian profiles. The impacts of order and turbulence levels on beam profile are analysed. Focusing effects and beam size change along the propagation axis are studied.

Keywords

Bessel Function Gaussian Beam Outer Ring Turbulent Atmosphere Bessel Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987)ADSGoogle Scholar
  2. 2.
    A.A. Tovar, J. Opt. Soc. Am. A 17, 2010 (2000)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    A.G. Sedukhin, J. Opt. Soc. Am. A 17, 1059 (2000)CrossRefADSGoogle Scholar
  4. 4.
    R. Borghi, M. Santarsiero, F. Gori, J. Opt. Soc. Am. A 14, 23 (1997)CrossRefADSGoogle Scholar
  5. 5.
    W.C. Soares, D.P. Caetano, J.M. Hickmann, Opt. Express 14, 4577 (2006)CrossRefADSGoogle Scholar
  6. 6.
    R.M. Herman, T.A. Wiggins, J. Opt. Soc. Am. A 17, 1021 (2000)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Y. Li, V. Gurevich, M. Kirchever, J. Katz, E. Marom, Appl. Opt. 40, 2709 (2001)CrossRefADSGoogle Scholar
  8. 8.
    Z. Mei, D. Zhao, X. Wei, F. Jing, Q. Zhu, Optik 116, 521 (2005)ADSGoogle Scholar
  9. 9.
    J. Gu, D. Zhao, Z. Mei, H. Mao, H. Xu, Optik 115, 529 (2004)ADSGoogle Scholar
  10. 10.
    D. Ling, J. Li, J. Opt. Soc. Am. A 23, 1574 (2006)CrossRefADSGoogle Scholar
  11. 11.
    A. Belafhal, L. Dalil-Essakali, Opt. Commun. 177, 181 (2000)CrossRefADSGoogle Scholar
  12. 12.
    L. Wang, X. Wang, B. Lü, Optik 116, 65 (2005)ADSGoogle Scholar
  13. 13.
    Z. Gao, B. Lü, Chin. Phys. 15, 334 (2006)CrossRefADSGoogle Scholar
  14. 14.
    X. Wang, B. Lü, Opt. Quantum Electron. 34, 1071 (2002)CrossRefGoogle Scholar
  15. 15.
    C. Zhao, L. Wang, X. Lu, H. Chen, Opt. Laser Technol. 39, 1199 (2007)CrossRefADSGoogle Scholar
  16. 16.
    W. Gröbner, N. Hofreiter, Integraltafel Zweiter Teil Bestimmte Integrale (Springer, Wien, 1961)Google Scholar
  17. 17.
    I.S. Gradysteyn, I.M. Ryzhik, Tables of Integrals, Series and Products, ed. by A Jeffrey, D. Zwillinger (Academic Press, New York, 2000)Google Scholar
  18. 18.
    H.T. Eyyuboğlu, S. Altay, Y. Baykal, Opt. Commun. 264, 25 (2006)CrossRefADSGoogle Scholar
  19. 19.
    R. Borghi, M. Santarsiero, Opt. Lett. 22, 262 (1997)CrossRefADSGoogle Scholar
  20. 20.
    W.H. Carter, Appl. Opt. 19, 1027 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Çankaya University, Electronic and Communication Engineering DepartmentBalgat AnkaraTurkey

Personalised recommendations