Applied Physics B

, Volume 88, Issue 2, pp 245–248 | Cite as

Fabrication of silica/zinc oxide core–shell colloidal photonic crystals

  • Xiying Ma
  • Weilin Shi
  • Zhijun Yan
  • Baoping Shen


We have fabricated three-dimensional ZnO photonic crystals by the self-assembly of SiO2/ZnO core–shell microspheres of diameter 180–220 nm by means of a vertical deposition method. The organized crystals adopt a uniform close-packed hexagonal structure with long-range order and a high filling fraction. They exhibit strong partial photonic band gaps at 565–688 nm in the transmission spectrum and a broadened band edge emission at 383 nm in the photoluminescence spectrum. For comparison with these ZnO photonic crystals, we have also prepared pure silica crystals of the same dimensions. The photonic band gaps of the former have been found to be shifted to a longer wavelength by about 200 nm compared to those of the latter as a result of the higher refractive index of ZnO. This approach provides an efficient, economical alternative means of obtaining other, more complicated photonic crystals.


Photonic Crystal Atomic Layer Deposition Silica Sphere Band Edge Emission Silica Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefADSGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefADSGoogle Scholar
  3. 3.
    R. Mafouana, J.L. Rehspringer, C. Hirlimann, C. Estournes, D. Dorkenno, Appl. Phys. Lett. 85, 3513 (2004)CrossRefGoogle Scholar
  4. 4.
    C.H. Lin, B.S. Chiou, C.H. Chang, J.D. Lin, Mater. Chem. Phys. 77, 647 (2002)CrossRefGoogle Scholar
  5. 5.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)CrossRefADSGoogle Scholar
  6. 6.
    T. Sumida, Y. Wada, T. Kitamura, S. Yanagida, Chem. Lett. 30, 38 (2001)CrossRefGoogle Scholar
  7. 7.
    S.M. Abrarov, S.U. Yuldashev, T.W. Kim, S.B. Lee, Y.H. Kwon, T.W. Kang, Opt. Commun. 250, 111 (2005)CrossRefADSGoogle Scholar
  8. 8.
    S.M. Abrarov, S.U. Yuldashev, S.B. Lee, T.W. Kang, Japan. J. Appl. Phys. 43, 6101 (2004)CrossRefADSGoogle Scholar
  9. 9.
    A. Rugge, J.S. Becker, R.G. Gordon, S.H. Tolbert, Nano Lett. 3, 1293 (2003)CrossRefADSGoogle Scholar
  10. 10.
    F. Meseguer, A. Blanco, H. Miguez, F. Garcia-Santamaria, M. Ibisate, C. Lopez, Colloid Surf. A 202, 281 (2002)CrossRefGoogle Scholar
  11. 11.
    M. Scharrer, X. Wu, A. Yamilov, H. Cao, R.P.H. Chang, Appl. Phys. Lett. 86, 151113 (2005)CrossRefADSGoogle Scholar
  12. 12.
    S.L. Kuai, X.F. Hu, V.V. Truong, J. Cryst. Growth 259, 404 (2003)CrossRefADSGoogle Scholar
  13. 13.
    X. Ma, Appl. Phys. B 84, 339 (2006)CrossRefADSGoogle Scholar
  14. 14.
    T. Maka, D.N. Chigrin, S.G. Romanov, C.M. Sotomayor Torres, Prog. Electromagn. Res. (PIER) 41, 307 (2003)Google Scholar
  15. 15.
    L. Zhang, D. Xia, Q. Shen, J. Nanopart. Res. 8, 23 (2006)CrossRefGoogle Scholar
  16. 16.
    K. Lattaud, S. Vilminot, C. Hirlimann, H. Parant, J. Schoelkopf, P. Gane, Solid State Sci. 8, 1222 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xiying Ma
    • 1
  • Weilin Shi
    • 1
  • Zhijun Yan
    • 1
  • Baoping Shen
    • 1
  1. 1.Institute of Optoelectronic MaterialsShaoxing UniversityShaoxingP.R. China

Personalised recommendations