Applied Physics B

, Volume 88, Issue 2, pp 201–204

Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence

Article

Abstract

The luminescence properties of Neodymium ions in Zn diffused LiNbO3 channel waveguides have been studied with sub-micrometric spatial resolution. The analysis of the luminescence spectra suggests the existence of a local expansion and disordering associated to the presence of Zn in the LiNbO3 lattice after the diffusion process. By taking this cause–effect relation into account, it has been possible to determine both the in-depth and lateral Zn diffusion lengths, as well to elucidate the spatial location of the channel waveguide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Arizmendi, Phys. Stat. Solidi A 201, 253 (2004)CrossRefADSGoogle Scholar
  2. 2.
    R.E. Di Paolo, E. Cantelar, P.L. Pernas, G. Lifante, F. Cusso, Appl. Phys. Lett. 79, 4088 (2001)CrossRefADSGoogle Scholar
  3. 3.
    K. Gallo, G. Assanto, G.I. Stegman, Appl. Phys. Lett. 71, 1020 (1997)CrossRefADSGoogle Scholar
  4. 4.
    J. Sochting, R. Gross, I. Baumann, W. Sohler, H. Schutz, R. Widmer, Electron. Lett. 31, 551 (1995)CrossRefADSGoogle Scholar
  5. 5.
    J. Capmany, Appl. Phys. Lett. 78, 144 (2001)CrossRefADSGoogle Scholar
  6. 6.
    M.V. Pliss, M.G.F. Wilson, IEEE Proc. Optoelectron. 141, 195 (1994)Google Scholar
  7. 7.
    S.J. Field, D.C. Hanna, D.P. Shepherd, A.C. Tropper, P.J. Chandler, P.D. Townsend, L. Zhang, Opt. Lett. 116, 481 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    J. Amin, M. Hempstead, J.E. Roman, J.S. Wilkinson, Opt. Lett. 19, 1541 (1994)ADSGoogle Scholar
  9. 9.
    Y.L. Lee, N.E. Yu, C. Jung, B.A. Yu, I.B. Sohm, S.C. Choi, Y.C. Noh, D.K. Ko, W.S. Yang, H.M. Lee, W.K. Kim, H.Y. Lee, Appl. Phys. Lett. 89, 171103 (2006)CrossRefADSGoogle Scholar
  10. 10.
    R. Nevado, G. Lifante, Appl. Phys. A: Mater. 72, 725 (2001)CrossRefADSGoogle Scholar
  11. 11.
    M. Domenech, G. Lifante, Appl. Phys. Lett. 84, 3271 (2004)CrossRefADSGoogle Scholar
  12. 12.
    O. Espeso Gil, G. García, F. Agulló López, A. Climent Font, T. Sajavaara, M. Domenech, E. Cantelar, G. Lifante, Appl. Phys. Lett. 81, 1982 (2002)CrossRefADSGoogle Scholar
  13. 13.
    D. Jaque, J.A. Sanz García, J. García Solé, Appl. Phys. Lett. 85, 19 (2004)CrossRefADSGoogle Scholar
  14. 14.
    U.R. Rodriguez Mendoza, A. Rodenas, D. Jaque, I.R. Martín, F. Lahoz, V. Lavin, High Press. Res. 26, 341 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Y. Zhang, L. Guilbert, P. Bourson, Appl. Phys. B 78, 355 (2004)CrossRefADSGoogle Scholar
  16. 16.
    V. Dierolf, T. Morgus, C. Sandmann, E. Cantelar, F. Cussó, P. Capek, J. Spirkova, K. Polgar, W. Sohler, A. Ostendorf, Radiat. Eff. Defect S. 158, 263 (2003)CrossRefGoogle Scholar
  17. 17.
    I. Suarez, G. Lifante, Opt. Mater. (in press)Google Scholar
  18. 18.
    R. Nevado, G. Lifante, G.A. Torchia, J.A. Sanz García, F. Jaque, Opt. Mater. 11, 35 (1998)CrossRefADSGoogle Scholar
  19. 19.
    I. Suarez, P. Pernas, G. Lifante, Microwave Opt. Technol. Lett. 49, 1194 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Departamento de Física de Materiales C–IV, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations