Applied Physics B

, Volume 87, Issue 4, pp 707–716 | Cite as

Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy

  • O. Silvestre
  • M.C. Pujol
  • M. Rico
  • F. Güell
  • M. Aguiló
  • F. Díaz


This paper presents the crystal growth and optical characterization of thulium-doped KLu(WO4)2 (KLuW). Thulium-doped KLuW macrodefect-free monoclinic single crystals (a*×b×c≈10×7×15 mm3) were grown by the top seeded solution growth slow cooling method with dopant concentrations of 0.5%, 1%, 3% and 5% atomic in solution. The evolution of unit cell parameters in relation with thulium doping was studied by X-ray powder patterns. Thulium energy levels in the KLuW host were determined by 6 K polarized optical absorption. The Judd–Ofelt parameters determined were Ω2=9.01×10-20 cm2, Ω4=1.36×10-20 cm2 and Ω6=1.43×10-20 cm2. The maximum emission cross section for the 1.9 μm emission, calculated by Füchtbauer–Ladenburg method, is 1.75×10-20 cm2, at 1845 nm with E//Nm. The intensity decay time from the emitting levels 1G4 and 3H4 levels in relation to the concentration were studied. For the lowest thulium concentration, the measured decay times from 1G4 and 3H4 emitting levels are 140 μs and 230 μs, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Kaminskii, Phys. Stat. Solidi A 200, 215 (2003)CrossRefADSGoogle Scholar
  2. 2.
    M.C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Suriñach, J. Massons, F. Díaz, M. Aguiló, J. Appl. Cryst. 39, 230 (2006)CrossRefGoogle Scholar
  3. 3.
    X. Mateos, V. Petrov, M. Aguiló, R.M. Solé, J. Gavaldà, J. Massons, F. Díaz, U. Griebner, IEEE J. Quantum Electron. QE-40, 1056 (2004)CrossRefADSGoogle Scholar
  4. 4.
    X. Mateos, V. Petrov, J. Liu, M.C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, G. Viera, IEEE J. Quantum Electron. QE-42, 1008 (2006)CrossRefADSGoogle Scholar
  5. 5.
    V. Petrov, F. Güell, J. Massons, J. Gavaldà, R.M. Sole, M. Aguiló, F. Díaz, U. Griebner, IEEE J. Quantum Electron. QE-40, 1244 (2004)CrossRefADSGoogle Scholar
  6. 6.
    A.A. Kaminskii, A.A. Pavlyuk, P.V. Klevtsov, I.F. Balashov, V.A. Berenberg, S.E. Sarkisov, V.A. Fedorov, M.V. Petrov, V.V. Lyubchenko, Inorg. Mater. 13, 482 (1977) [Translated from Izv. Akad. Nauk. USSR., Neorg. Mater. 13, 582 (1977)]Google Scholar
  7. 7.
    S.N. Bagaev, S.M. Vatnik, A.P. Majorov, A.A. Pavlujk, Adv. Solid State Lasers 50, 175 (2001)Google Scholar
  8. 8.
    A.A. Demidovich, A.A. Kuzmin, N.K. Nikeenko, M. Mond, S. Kück, J. Alloys Compd. 341, 124 (2002)CrossRefGoogle Scholar
  9. 9.
    A.E. Troshin, V.E. Kisel, V.G. Shcherbitsky, N.V. Kuleshov, A.A. Pavlyuk, E.B. Dunina, A.A. Kornienko, Adv. Solid State Photon. 98, 214 (2005)Google Scholar
  10. 10.
    B.R. Judd, Phys. Rev. 127, 750 (1962)CrossRefADSGoogle Scholar
  11. 11.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)CrossRefADSGoogle Scholar
  12. 12.
    M.C. Pujol, R. Solé, V. Nikolov, J. Gavaldà, J. Massons, C. Zaldo, M. Aguiló, F. Díaz, J. Mater. Res. 14, 3739 (1999)CrossRefADSGoogle Scholar
  13. 13.
    M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, M. Aguiló, J. Appl. Cryst. 34, 1 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Aznar, O. Silvestre, M.C. Pujol, R. Solé, M. Aguiló, F. Díaz, Cryst. Growth Des. 6, 1781 (2006)Google Scholar
  15. 15.
    P.V. Klevtsov, L.P. Kozeeva, L.Y. Kharchenko, Sov. Phys. Cryst. 20, 732 (1976) [Translated from Kristallografiya 20, 1210 (1975)]Google Scholar
  16. 16.
    J. Rodriguez-Carvajal, Reference Guide for the Computer Program Fullprof (Laboratorie León Brillouin, CEA-CNRS, Saclay, France, 2000)Google Scholar
  17. 17.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  18. 18.
    F. Güell, J. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galán, J. Massons, J. Appl. Phys. 95, 919 (2004)CrossRefADSGoogle Scholar
  19. 19.
    S.N. Bagaev, S.M. Vatnik, A.P. Maiorov, A.A. Pavlyuk, D.V. Plakushchev, Quantum Electron. 30, 310 (2000)CrossRefGoogle Scholar
  20. 20.
    M.C. Pujol, F. Güell, X. Mateos, J. Gavaldà, R. Solé, J. Massons, M. Aguiló, F. Díaz, G. Boulon, A. Brenier, Phys. Rev. B 66, 144304 (2002)CrossRefADSGoogle Scholar
  21. 21.
    J.M. Cano-Torres, M.D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F.J. Valle, M. Galán, G. Viera, J. Opt. Soc. Am. B 23, 2494 (2006)Google Scholar
  22. 22.
    H. Wang, G. Jia, F. Yang, Y. Wei, Z. You, Y. Wang, J. Li, Z. Zhu, X. Lu, C. Tu, Appl. Phys. B 83, 579 (2006)CrossRefADSGoogle Scholar
  23. 23.
    C. Görller-Walrand, K. Binnemans. in Handbook on the Physics and Chemistry of Rare Earths, ed. by K.A. Gschneider Jr., L. Eyring (Elsevier Science BV, Amsterdam, 1998), vol. 25, p. 101Google Scholar
  24. 24.
    A.A. Kaminskii, Crystalline Lasers, Physical Processes and Operating Schemes (CRC Press, Boca Raton, New York, London, Tokyo, 1996)Google Scholar
  25. 25.
    X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, V. Petrov, U. Griebner, Opt. Mater. 28, 519 (2006)CrossRefADSGoogle Scholar
  26. 26.
    N.P. Barnes, E.D. Filer, C.A. Morrison, C.J. Lee, IEEE J. Quantum Electron. QE-32, 92 (1996)CrossRefADSGoogle Scholar
  27. 27.
    L.E. Batay, A.A. Demidovich, A.N. Kuzmin, A.N. Titov, M. Mond, S. Kück, Appl. Phys. B 75, 457 (2002)CrossRefADSGoogle Scholar
  28. 28.
    A. Dergachev, K. Wall, P.F. Moulton, Adv. Solid State Lasers 68, 343 (2002)Google Scholar
  29. 29.
    B.F. Aull, H.P. Jenssen, IEEE J. Quantum Electron. QE-18, 925 (1982)CrossRefADSGoogle Scholar
  30. 30.
    L. DeLoach, S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke, IEEE J. Quantum Electron. QE-29, 1179 (1993)CrossRefADSGoogle Scholar
  31. 31.
    F.D. Patel, E.C. Honea, J. Speth, S.A. Payne, R. Hutcheson, R. Equall, IEEE J. Quantum Electron. QE-37, 135 (2001)CrossRefADSGoogle Scholar
  32. 32.
    R. Lisiecki, W. Ryba-Romanowski, T. Lukasiewicz, Appl. Phys. B 81, 43 (2005)CrossRefADSGoogle Scholar
  33. 33.
    M. Inokuti, F. Hirayama, J. Chem. Phys. 43, 1978 (1965)CrossRefADSGoogle Scholar
  34. 34.
    W. Ryba-Romanowski, S. Golab, I. Sokolska, G. Dominiak Dzik, J. Zawadzka, M. Berkowski, J. Fink Finowicki, M. Baba, Appl. Phys. B 68, 199 (1999)CrossRefADSGoogle Scholar
  35. 35.
    F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, F. Díaz, J. Massons, J. Luminesc. 106, 109 (2004)CrossRefGoogle Scholar
  36. 36.
    M.F. Joubert, S. Guy, S. Cuerq, P.A. Tanner, J. Luminesc. 75, 287 (1997)CrossRefGoogle Scholar
  37. 37.
    A. Sennaroglu, A. Kurt, G.J. Özen, J. Phys.: Condens. Matter 16, 2471 (2004)CrossRefADSGoogle Scholar
  38. 38.
    C. Tu, J. Li, Z. Zhu, Z. Chen, Y. Wang, B. Wu, Opt. Commun. 227, 383 (2003)CrossRefADSGoogle Scholar
  39. 39.
    M.J. Weber, T.E. Varitimos, B.H. Matsinger, Phys. Rev. B 8, 47 (1973)CrossRefADSGoogle Scholar
  40. 40.
    W.F. Krupke, IEEE Region VI Conference, Albuquerque, NM (1974), pp. 17–31 (unpublished)Google Scholar
  41. 41.
    M. Dulick, G.E. Faulkner, N.J. Cockroft, D.C. Nguyen, J. Luminesc. 4849, 517 (1991)Google Scholar
  42. 42.
    B.M. Antipenko, Opt. Spectrosc. 56, 72 (1984)Google Scholar
  43. 43.
    F.S. Ermeneux, C. Goutadier, R. Moncorge, Opt. Mater. 8, 83 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • O. Silvestre
    • 1
  • M.C. Pujol
    • 1
  • M. Rico
    • 2
  • F. Güell
    • 1
  • M. Aguiló
    • 1
  • F. Díaz
    • 1
  1. 1.Física i Cristal·lografia de Materials (FiCMA)Universitat Rovira i VirgiliTarragonaSpain
  2. 2.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations