Advertisement

Applied Physics B

, Volume 88, Issue 1, pp 141–150 | Cite as

Nitric oxide concentration measurements in atmospheric pressure flames using electronic-resonance-enhanced coherent anti-Stokes Raman scattering

  • N. Chai
  • W.D. Kulatilaka
  • S.V. Naik
  • N.M. Laurendeau
  • R.P. Lucht
  • J.P. Kuehner
  • S. Roy
  • V.R. Katta
  • J.R. Gord
Article

Abstract

We report the application of electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) for measurements of nitric oxide concentration ([NO]) in three different atmospheric pressure flames. Visible pump (532 nm) and Stokes (591 nm) beams are used to probe the Q-branch of the Raman transition. A significant resonance enhancement is obtained by tuning an ultraviolet probe beam (236 nm) into resonance with specific rotational transitions in the (v’=0, v”=1) vibrational band of the A2Σ+–X2Π electronic system of NO. ERE-CARS spectra are recorded at various heights within a hydrogen-air flame producing relatively low concentrations of NO over a Hencken burner. Good agreement is obtained between NO ERE-CARS measurements and the results of flame computations using UNICORN, a two-dimensional flame code. Excellent agreement between measured and calculated NO spectra is also obtained when using a modified version of the Sandia CARSFT code for heavily sooting acetylene-air flames (φ=0.8 to φ=1.6) on the same Hencken burner. Finally, NO concentration profiles are measured using ERE-CARS in a laminar, counter-flow, non-premixed hydrogen-air flame. Spectral scans are recorded by probing the Q1 (9.5), Q1 (13.5) and Q1 (17.5) Raman transitions. The measured shape of the [NO] profile is in good agreement with that predicted using the OPPDIF code, even without correcting for collisional effects. These comparisons between [NO] measurements and predictions establish the utility of ERE-CARS for detection of NO in flames with large temperature and concentration gradients as well as in sooting environments.

Keywords

Nitric Oxide Probe Beam Burner Surface Raman Transition Fuel Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.S. Cooper, N.M. Laurendeau, Appl. Phys. B 70, 903 (2000)CrossRefADSGoogle Scholar
  2. 2.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 41, 3547 (2002)CrossRefADSGoogle Scholar
  3. 3.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 42, 2031 (2003)CrossRefADSGoogle Scholar
  4. 4.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 42, 4922 (2003)CrossRefADSGoogle Scholar
  5. 5.
    S.V. Naik, N.M. Laurendeau, Combust. Sci. Technol. 174, 1809 (2004)CrossRefGoogle Scholar
  6. 6.
    K. Verbiezen, R.J.H. Klein-Douwel, A.P. van Vliet, A.J. Donkerbroek, W.L. Meerts, N.J. Dam, J.J. ter Meulen, Appl. Phys. B 83, 155 (2006)CrossRefADSGoogle Scholar
  7. 7.
    K. Verbiezen, R.J.H. Klein-Douwel, A.P. van Vliet, A.J. Donkerbroek, W.L. Meerts, N.J. Dam, J.J. ter Meulen, Proc. Combust. Inst. 31, 765 (2007)CrossRefGoogle Scholar
  8. 8.
    T. Lee, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 31, 757 (2007)CrossRefGoogle Scholar
  9. 9.
    G.C. Martin, C.J. Mueller, C.F. Lee, Appl. Opt. 45, 2089 (2006)CrossRefADSGoogle Scholar
  10. 10.
    T. Doerk, J. Ehlbeck, R. Jedamzik, J. Uhlenbusch, J. Hoschele, J. Steinwandel, Appl. Spectrosc. 51, 1360 (1997)CrossRefADSGoogle Scholar
  11. 11.
    A. Pott, T. Doerk, J. Uhlenbusch, J. Ehlbeck, J. Hoschele, J. Steinwandel, J. Phys. D Appl. Phys. 31, 2485 (1998)CrossRefADSGoogle Scholar
  12. 12.
    B. Attal-Tretout, P. Berlemont, J.P. Taran, Mol. Phys. 70, 1 (1990)CrossRefADSGoogle Scholar
  13. 13.
    B. Attal-Tretout, S.C. Schmidt, E. Crete, P. Dumas, J.P. Taran, J. Quantum Spectrosc. Radiat. Transf. 43, 351 (1990)Google Scholar
  14. 14.
    P. Doerk, M. Hertl, B. Pfelzer, S. Hadrich, P. Jauernik, J. Uhlenbusch, Appl. Phys. B 64, 111 (1997)CrossRefADSGoogle Scholar
  15. 15.
    S.F. Hanna, W.D. Kulatilaka, Z. Arp, T. Opatrny, M.O. Scully, J.P. Kuehner, R.P. Lucht, Appl. Phys. Lett. 83, 1887 (2003)CrossRefADSGoogle Scholar
  16. 16.
    S. Roy, W.D. Kulatilaka, S.V. Naik, N.M. Laurendeau, R.P. Lucht, J.R. Gord, Appl. Phys. Lett. 89, 104105 (2006)CrossRefADSGoogle Scholar
  17. 17.
    W.D. Kulatilaka, N. Chai, S.V. Naik, N.M. Laurendeau, R.P. Lucht, J.P. Kuehner, S. Roy, J.R. Gord, Opt. Commun. 274, 441 (2007)CrossRefADSGoogle Scholar
  18. 18.
    W.D. Kulatilaka, N. Chai, S.V. Naik, N.M. Laurendeau, R.P. Lucht, J.P. Kuehner, S. Roy, J.R. Gord, Opt. Lett. 31, 3357 (2006)CrossRefADSGoogle Scholar
  19. 19.
    W.D. Kulatilaka, R.P. Lucht, S.F. Hanna, V.R. Katta, Combust. Flame 137, 523 (2004)CrossRefGoogle Scholar
  20. 20.
    N. Vora, J.E. Siow, N.M. Laurendeau, Combust. Flame 126, 1393 (2001)CrossRefGoogle Scholar
  21. 21.
    V.R. Katta, L.P. Goss, W.M. Roquemore, Combust. Flame 96, 60 (1994)CrossRefGoogle Scholar
  22. 22.
    V.R. Katta, L.P. Goss, W.M. Roquemore, AIAA J. 32, 84 (1994)CrossRefADSGoogle Scholar
  23. 23.
    V.R. Katta, L.P. Goss, W.M. Roquemore, Int. J. Numer. Methods Heat Fluids Flow 4, 413 (1994)Google Scholar
  24. 24.
    A.E. Lutz, R.J. Kee, J.F. Grcar, Sandia National Laboratories, Report No. SAND96-8243 (1996)Google Scholar
  25. 25.
    R.J. Kee, J.A. Miller, G.H. Evans, G. Dixon-Lewis, Proc. Combust. Inst. 22, 1479 (1988)Google Scholar
  26. 26.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V. Lissianski, Z. Qin, GRI Mechanism (version 3.0) http://www.me.berkeley.edu/gri_mech/ (1999)Google Scholar
  27. 27.
    J.P. Gore, J. Lim, T. Takeno, X.L. Zhu, Proceedings of Fifth ASME/JSME Joint Thermal Engineering Conference, San Diego, CA, Paper AJTE99-6311 (1999)Google Scholar
  28. 28.
    R.E. Palmer, Sandia National Laboratories, Report No. SAND89-8206 (1989)Google Scholar
  29. 29.
    J. Luque, D.R. Crosley, SRI International, Report. No. MP99-009 (1999)Google Scholar
  30. 30.
    J. Laane, W. Kiefer, J. Raman Spectrosc. 9, 353 (1980)CrossRefADSGoogle Scholar
  31. 31.
    W. Lempert, G.J. Rosasco, W.S. Hurst, J. Chem. Phys. 81, 4241 (1984)CrossRefADSGoogle Scholar
  32. 32.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, Amsterdam, 1996)Google Scholar
  33. 33.
    P.H. Paul, C.D. Carter, J.A. Gray, J.W. Thoman, M.R. Furlanetto, Sandia National Laboratories, Report No. SAND94-8237 (1995)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • N. Chai
    • 1
  • W.D. Kulatilaka
    • 1
  • S.V. Naik
    • 1
  • N.M. Laurendeau
    • 1
  • R.P. Lucht
    • 1
  • J.P. Kuehner
    • 2
  • S. Roy
    • 3
  • V.R. Katta
    • 3
  • J.R. Gord
    • 4
  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Physics and EngineeringWashington & Lee UniversityLexingtonUSA
  3. 3.Innovative Scientific Solutions, Inc.DaytonUSA
  4. 4.Propulsion DirectorateAir Force Research LaboratoryWright-Patterson AFBUSA

Personalised recommendations