Applied Physics B

, Volume 87, Issue 4, pp 749–754 | Cite as

Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy

  • J.-F. Daigle
  • G. Méjean
  • W. Liu
  • F. Théberge
  • H.L. Xu
  • Y. Kamali
  • J. Bernhardt
  • A. Azarm
  • Q. Sun
  • P. Mathieu
  • G. Roy
  • J.-R. Simard
  • S.L. Chin
Article

Abstract

Remote filament induced breakdown spectroscopy (R-FIBS) is used for probing a cloud of microdroplets where table salt has been dissolved. These microdroplets are a good simulant for aerosols. We demonstrated experimentally that R-FIBS can efficiently be used as a ppm-level sensing technique to remotely retrieve the composition of microdroplets in clouds located at a distance. The technique has been successfully tested up to 70 m and, as revealed by extrapolation, showed great potential for kilometer-range application. The proposed technique is sensitive to the solvent as well. For the first time, to the best of our knowledge, four hydrogen bands from the Balmer series were observed in an aqueous microdroplet cloud after H2O molecules were broken by the light filaments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Borrmann, J. Curtius, Nature 418, 826 (2002)CrossRefADSGoogle Scholar
  2. 2.
    B.C. Windom, P.K. Diwakar, D.W. Hahn, Spectrochim. Acta B 61, 788 (2006)CrossRefADSGoogle Scholar
  3. 3.
    S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, Can. J. Phys. 83, 863 (2005)CrossRefADSGoogle Scholar
  4. 4.
    A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C.M. Bowden, S.L. Chin, Appl. Phys. B 73, 287 (2001)ADSGoogle Scholar
  5. 5.
    M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, Phys. Rev. E 69, 036607 (2004)CrossRefADSGoogle Scholar
  6. 6.
    W. Liu, F. Theberge, J.-F. Daigle, P.T. Simard, S.M. Sarifi, Y. Kamali, H.L. Xu, S.L. Chin, Appl. Phys. B 85, 55 (2006)CrossRefADSGoogle Scholar
  7. 7.
    F. Théberge, W. Liu, P.T. Simard, A. Becker, S.L. Chin, Phys. Rev. E 74, 036406 (2006)CrossRefADSGoogle Scholar
  8. 8.
    K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, Appl. Phys. Lett. 85, 3977 (2004)CrossRefADSGoogle Scholar
  9. 9.
    H.L. Xu, W. Liu, S.L. Chin, Opt. Lett. 31, 1540 (2006)CrossRefADSGoogle Scholar
  10. 10.
    C. Favre, V. Boutou, S.C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R.K. Chang, L. Woeste, J.-P. Wolf, Phys. Rev. Lett. 89, 05002 (2002)CrossRefADSGoogle Scholar
  11. 11.
    H.L. Xu, J.-F. Daigle, Q. Luo, S.L. Chin, Appl. Phys. B 82, 655 (2006)CrossRefADSGoogle Scholar
  12. 12.
    G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J.-P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, L. Bergé, Phys. Rev. E 72, 026611 (2005)CrossRefADSGoogle Scholar
  13. 13.
    R. Bourayou, G. Méjean, J. Kasparian, M. Rodriguez, E. Salmon, J. Yu, J. Opt. Soc. Am. B 22, 2 (2005)CrossRefADSGoogle Scholar
  14. 14.
    F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, J.-P. Wolf, Appl. Phys. Lett. 83, 2 (2003)CrossRefGoogle Scholar
  15. 15.
    G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, Appl. Phys. B 78, 535 (2004)CrossRefADSGoogle Scholar
  16. 16.
    T. Fujii, N. Goto, M. Miki, T. Nayuki, K. Nemoto, Opt. Lett. 31, 23 (2006)Google Scholar
  17. 17.
    Wikipedia Free Encyclopedia, see http://en.wikipedia.org/wiki/Dead_SeaGoogle Scholar
  18. 18.
    F. Théberge, W. Liu, Q. Luo, S.L. Chin, Appl. Phys. B 80, 221 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Resources in Earth Observation, see http://ceos.cnes.fr:8100/cdrom-98/astart.htmGoogle Scholar
  20. 20.
    A. Talebpour, M. Abdel-Fattah, A.D. Bandrauk, S.L. Chin, Laser Phys. 11, 68 (2001)Google Scholar
  21. 21.
    NIST Database, see http://physics.nist.gov/cgi-bin/AtData/lines-formGoogle Scholar
  22. 22.
    A. Talebpour, S. Petit, S.L. Chin, Opt. Commun. 171, 285 (1999)CrossRefADSGoogle Scholar
  23. 23.
    Q. Luo, S.A. Hosseini, W. Liu, J.-F. Gravel, O.G. Kosareva, N.A. Panov, N. Aközbek, V.P. Kandidov, G. Roy, S.L. Chin, Appl. Phys. B 80, 35 (2005)CrossRefADSGoogle Scholar
  24. 24.
    S.L. Chin, From multiphoton to tunnel ionization, in Advances in Multiphoton Processes and Spectroscopy, ed. by S.H. Lin, A.A. Villaeys, Y. Fujimura (World Scientific, Singapore, 2004), Chap. 16, pp. 249–272Google Scholar
  25. 25.
    J.H. Marburger, Prog. Quantum Electron. 4, 35 (1975)CrossRefADSGoogle Scholar
  26. 26.
    Q. Luo, J. Yu, S.A. Hosseini, W. Liu, B. Ferland, G. Roy, S.L. Chin, Appl. Opt. 44, 391 (2005)CrossRefADSGoogle Scholar
  27. 27.
    Wikipedia Free Encyclopedia, see http://en.wikipedia.org/wiki/Cumulus_humilis_cloudGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J.-F. Daigle
    • 1
  • G. Méjean
    • 1
  • W. Liu
    • 1
  • F. Théberge
    • 1
  • H.L. Xu
    • 1
  • Y. Kamali
    • 1
  • J. Bernhardt
    • 1
  • A. Azarm
    • 1
  • Q. Sun
    • 1
  • P. Mathieu
    • 2
  • G. Roy
    • 2
  • J.-R. Simard
    • 2
  • S.L. Chin
    • 1
  1. 1.Centre d’Optique, Photonique et Laser (COPL) et le Département de Physique, de Génie Physique et d’OptiqueUniversité LavalQuébecCanada
  2. 2.The Sensing (Air & Surface) & Optronics Section of the Defense Research and Development CenterValcartierCanada

Personalised recommendations