Advertisement

Applied Physics B

, Volume 87, Issue 3, pp 503–521 | Cite as

Modeling laser-induced incandescence of soot: a summary and comparison of LII models

  • H.A. Michelsen
  • F. Liu
  • B.F. Kock
  • H. Bladh
  • A. Boiarciuc
  • M. Charwath
  • T. Dreier
  • R. Hadef
  • M. Hofmann
  • J. Reimann
  • S. Will
  • P.-E. Bengtsson
  • H. Bockhorn
  • F. Foucher
  • K.-P. Geigle
  • C. Mounaïm-Rousselle
  • C. Schulz
  • R. Stirn
  • B. Tribalet
  • R. Suntz
Article

Abstract

We have performed a comparison of ten models that predict the temporal behavior of laser-induced incandescence (LII) of soot. In this paper we present a summary of the models and comparisons of calculated temperatures, diameters, signals, and energy-balance terms. The models were run assuming laser heating at 532 nm at fluences of 0.05 and 0.70 J/cm2 with a laser temporal profile provided. Calculations were performed for a single primary particle with a diameter of 30 nm at an ambient temperature of 1800 K and a pressure of 1 bar. Preliminary calculations were performed with a fully constrained model. The comparison of unconstrained models demonstrates a wide spread in calculated LII signals. Many of the differences can be attributed to the values of a few important parameters, such as the refractive-index function E(m) and thermal and mass accommodation coefficients. Constraining these parameters brings most of the models into much better agreement with each other, particularly for the low-fluence case. Agreement among models is not as good for the high-fluence case, even when selected parameters are constrained. The reason for greater variability in model results at high fluence appears to be related to solution approaches to mass and heat loss by sublimation.

Keywords

Independent Model Sublimation Rate Rayleigh Approximation Signal Decay Rate Mass Accommodation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.E. Dec, SAE Paper 920115 (1992)Google Scholar
  2. 2.
    J.E. Dec, A.O. zur Loye, D.L. Siebers, SAE Paper 910224 (1991)Google Scholar
  3. 3.
    C. Espey, J.E. Dec, SAE Paper 930971 (1993)Google Scholar
  4. 4.
    N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)Google Scholar
  5. 5.
    R.L. Vander Wal, D.L. Dietrich, Appl. Opt. 34, 1103 (1995)ADSGoogle Scholar
  6. 6.
    R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)CrossRefADSGoogle Scholar
  7. 7.
    C. Crua, D.A. Kennaird, M.R. Heikal, Combust. Flame 135, 475 (2003)CrossRefGoogle Scholar
  8. 8.
    M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, R.J. Hall, Combust. Flame 143, 613 (2005)CrossRefGoogle Scholar
  9. 9.
    C. Schoemaecker Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)CrossRefADSGoogle Scholar
  10. 10.
    T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002)CrossRefGoogle Scholar
  11. 11.
    T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)ADSGoogle Scholar
  12. 12.
    C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)CrossRefGoogle Scholar
  13. 13.
    A. Boiarciuc, F. Foucher, C. Mounaïm-Rousselle, Appl. Phys. B 83, 413 (2006)CrossRefADSGoogle Scholar
  14. 14.
    A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977)CrossRefADSGoogle Scholar
  15. 15.
    R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1974)CrossRefADSGoogle Scholar
  16. 16.
    L.A. Melton, Appl. Opt. 23, 2201 (1984)ADSGoogle Scholar
  17. 17.
    C.J. Dasch, Appl. Opt. 23, 2209 (1984)ADSGoogle Scholar
  18. 18.
    D.L. Hofeldt, SAE Paper 930079 (1993)Google Scholar
  19. 19.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)ADSGoogle Scholar
  20. 20.
    S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)CrossRefADSGoogle Scholar
  21. 21.
    B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)CrossRefADSGoogle Scholar
  22. 22.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)CrossRefGoogle Scholar
  23. 23.
    A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)CrossRefGoogle Scholar
  24. 24.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)CrossRefGoogle Scholar
  25. 25.
    C. Allouis, F. Rosano, F. Beretta, A. D’Alessio, Meas. Sci. Technol. 13, 401 (2002)CrossRefADSGoogle Scholar
  26. 26.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)CrossRefADSGoogle Scholar
  27. 27.
    T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)CrossRefGoogle Scholar
  28. 28.
    B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002)CrossRefGoogle Scholar
  29. 29.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)CrossRefGoogle Scholar
  30. 30.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006)CrossRefGoogle Scholar
  31. 31.
    V. Krüger, C. Wahl, R. Hadef, K.P. Geigle, W. Stricker, M. Aigner, Meas. Sci. Technol. 16, 1477 (2005)CrossRefADSGoogle Scholar
  32. 32.
    J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 26, 2387 (1996)Google Scholar
  33. 33.
    K.R. McManus, J.H. Frank, M.G. Allen, W.T. Rawlins, Proc. AIAA 36, 98 (1998)Google Scholar
  34. 34.
    D. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, in Proc. 34th Natl. Heat Transfer Conf. (NHTC2000-12132), Pittsburgh, Pennsylvania, USA, 2000Google Scholar
  35. 35.
    G.J. Smallwood, D. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transfer 123, 814 (2001)CrossRefGoogle Scholar
  36. 36.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)CrossRefADSGoogle Scholar
  37. 37.
    H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)CrossRefADSGoogle Scholar
  38. 38.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)CrossRefGoogle Scholar
  39. 39.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)CrossRefADSGoogle Scholar
  40. 40.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006)CrossRefADSGoogle Scholar
  41. 41.
    V. Beyer, D.A. Greenhalgh, Appl. Phys. B 83, 455 (2006)CrossRefADSGoogle Scholar
  42. 42.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)CrossRefADSGoogle Scholar
  43. 43.
    http://www.vug.uni-duisburg.de/IVG/index.htmlGoogle Scholar
  44. 44.
    http://www.vbt.uni-karlsruhe.de/specialtopic/2ndLIIWS2006/Internetauftritt1.htmGoogle Scholar
  45. 45.
    B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)CrossRefGoogle Scholar
  46. 46.
    M.W. Chase Jr., J. Phys. Chem. Ref. Data Monogr. 9 14, 535 (1998)Google Scholar
  47. 47.
    L.E. Fried, W.M. Howard, Phys. Rev. B 61, 8734 (1999)CrossRefADSGoogle Scholar
  48. 48.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  49. 49.
    Ü.Ö. Köylü, Combust. Flame 109, 488 (1996)CrossRefGoogle Scholar
  50. 50.
    Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 118, 415 (1996)CrossRefGoogle Scholar
  51. 51.
    H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)CrossRefGoogle Scholar
  52. 52.
    E.R.G. Eckert, R.M. Drake Jr., Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972)zbMATHGoogle Scholar
  53. 53.
    W.M. Rohsenow, H.Y. Choi, Heat, Mass, and Momentum Transfer (Prentice-Hall, Englewood Cliffs, NJ, 1961)Google Scholar
  54. 54.
    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)zbMATHCrossRefGoogle Scholar
  55. 55.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)Google Scholar
  56. 56.
    S.C. Graham, J.B. Homer, J.L.J. Rosenfeld, Proc. R. Soc. London A 344, 259 (1975)ADSGoogle Scholar
  57. 57.
    Degussa AG, Pigmentruße/Pigment Blacks, Technische Daten/Technical Data, FrankfurtGoogle Scholar
  58. 58.
    W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 100 (1969)Google Scholar
  59. 59.
    K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314 (1996)CrossRefGoogle Scholar
  60. 60.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. London A 430, 577 (1990)ADSGoogle Scholar
  61. 61.
    S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transf. 123, 331 (2001)CrossRefGoogle Scholar
  62. 62.
    M.P. Hoffman, F.A. Rigby, AIAA J. 29, 927 (1991)CrossRefADSGoogle Scholar
  63. 63.
    L. Brewer, J.S. Kane, J. Phys. Chem. 59, 105 (1955)CrossRefGoogle Scholar
  64. 64.
    Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturewissenschaften und Technik, vol. II/2a, 6th edn. (Springer, Berlin, 1960)Google Scholar
  65. 65.
    J. Häger, D. Glatzer, H. Kuze, M. Fink, H. Walther, Surf. Sci. 374, 181 (1997)CrossRefGoogle Scholar
  66. 66.
    O. Leroy, J. Perrin, J. Jolly, M. Péalat, M. Lefebvre, J. Phys. D 30, 499 (1997)CrossRefADSGoogle Scholar
  67. 67.
    S.C. Saxena, R.K. Joshi, Thermal Accommodation and Absorption Coefficients of Gases (McGraw-Hill, New York, 1981)Google Scholar
  68. 68.
    S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H.A. Michelsen
    • 1
  • F. Liu
    • 2
  • B.F. Kock
    • 3
  • H. Bladh
    • 4
  • A. Boiarciuc
    • 5
  • M. Charwath
    • 6
  • T. Dreier
    • 7
  • R. Hadef
    • 8
  • M. Hofmann
    • 3
  • J. Reimann
    • 9
  • S. Will
    • 9
  • P.-E. Bengtsson
    • 4
  • H. Bockhorn
    • 6
  • F. Foucher
    • 5
  • K.-P. Geigle
    • 10
  • C. Mounaïm-Rousselle
    • 5
  • C. Schulz
    • 3
  • R. Stirn
    • 10
  • B. Tribalet
    • 3
  • R. Suntz
    • 6
  1. 1.Combustion Research FacilitySandia National LabsLivermoreUSA
  2. 2.National Research CouncilOttawaCanada
  3. 3.IVGUniversität Duisburg-EssenDuisburgGermany
  4. 4.Department of Combustion PhysicsLund Institute of TechnologyLundSweden
  5. 5.Université d’OrléansOrléansFrance
  6. 6.Universität KarlsruheKarlsruheGermany
  7. 7.Paul Scherrer InstitutVilligenSwitzerland
  8. 8.Institut de Génie MécaniqueUniversité Larbi Ben M’HidiOum El BouaghiAlgeria
  9. 9.Technische ThermodynamikUniversität BremenBremenGermany
  10. 10.Institute of Combustion TechnologyDLRStuttgartGermany

Personalised recommendations