Skip to main content
Log in

Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new sensor has been developed for measuring atomic mercury using absorption spectroscopy with 254-nm radiation generated from two sum-frequency-mixed diode lasers. Beams from a 375-nm external-cavity diode laser and a 784-nm distributed feedback diode laser are mixed in a beta-barium-borate crystal to generate approximately 4 nW of ultraviolet radiation. The development of the sensor is described along with extensive characterization experiments in a mercury vapor cell in the laboratory. An accuracy of ±6% in the absolute concentration of atomic mercury has been demonstrated by comparison with equilibrium vapor pressure calculations. The detection limit is approximately 0.1 parts per billion of atomic mercury in a meter path length for 300-K gas and a 10-s integration time. The insensitivity of the sensor to broadband attenuation is demonstrated. Measurements of collision-broadening coefficients for air, N2, Ar, and CO2 are reported, and implementation of wavelength-modulation spectroscopy with the sensor is demonstrated. Finally, results are presented from measurements with the sensor in situ in the exhaust stream of an actual coal-fired combustor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Pavlish, E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, D.L. Laudal, S.A. Benson, Fuel Process. Technol. 82, 89 (2003)

    Google Scholar 

  2. www.epa.gov/mercury (2006)

  3. W.J. O’Dowd, R.A. Hargis, E.J. Granite, H.W. Pennline, Fuel Process. Technol. 85, 533 (2004)

    Google Scholar 

  4. D.L. Laudal, T.D. Brown, B.R. Nott, Fuel Process. Technol. 65, 157 (2000)

    Google Scholar 

  5. D.L. Laudal, J.S. Thompson, J.H. Pavlish, L.A. Brickett, P. Chu, Fuel Process. Technol. 85, 501 (2004)

    Google Scholar 

  6. E.J. Granite, Obstacles in the development of mercury continuous emissions monitors, in Proc. 20th Annu. Int. Pittsburgh Coal Conf., Pittsburgh, PA, 15–19 September 2003, paper 30-1

  7. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  8. S.F. Hanna, R. Barron-Jimenez, T.N. Anderson, R.P. Lucht, J.A. Caton, T. Walther, Appl. Phys. B 75, 113 (2002)

    Article  ADS  Google Scholar 

  9. T.N. Anderson, R.P. Lucht, R. Barron-Jimenez, S.F. Hanna, J.A. Caton, T. Walther, S. Roy, M.S. Brown, J.R. Gord, I. Critchley, L. Flamand, Appl. Opt. 44, 1491 (2005)

    Article  ADS  Google Scholar 

  10. T.N. Anderson, R.P. Lucht, T.R. Meyer, S. Roy, J.R. Gord, Opt. Lett. 30, 1321 (2005)

    ADS  Google Scholar 

  11. T.R. Meyer, S. Roy, T.N. Anderson, J.D. Miller, V.R. Katta, R.P. Lucht, J.R. Gord, Appl. Opt. 44, 6729 (2005)

    Article  ADS  Google Scholar 

  12. T.N. Anderson, R.P. Lucht, S. Priyadarsan, K. Annamalai, J.A. Caton, Appl. Opt., in press

  13. J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000)

    Article  ADS  Google Scholar 

  14. A.E. Carruthers, T.K. Lake, A. Shah, J.W. Allen, W. Sibbett, K. Dholaki, Opt. Commun. 255, 261 (2005)

    Article  ADS  Google Scholar 

  15. G. Herzberg, Atomic Spectra and Atomic Structure (Dover, New York, 1944)

    Google Scholar 

  16. Y. Nishimura, T. Fujimoto, Appl. Phys. B 38, 91 (1985)

    Article  ADS  Google Scholar 

  17. E.C. Benck, J.E. Lawler, J.T. Dakin, J. Opt. Soc. Am. B 6, 11 (1989)

    ADS  Google Scholar 

  18. W.G. Schweitzer Jr., J. Opt. Soc. Am. 53, 1055 (1963)

    ADS  Google Scholar 

  19. F. Bitter, Appl. Opt. 1, 1 (1962)

    ADS  Google Scholar 

  20. NIST web page, http://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable1.htm

  21. J. Humlíček, J. Quant. Spectrosc. Radiat. Transf. 21, 309 (1979)

    Article  ADS  Google Scholar 

  22. SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423, USA through www.sandia.gov/imrl/XWEB1118/xxtal.htm

  23. V.L. Kasyutich, P.A. Martin, R.J. Holdsworth, Chem. Phys. Lett. 430, 429 (2006)

    ADS  Google Scholar 

  24. V.L. Kasyutich, P.A. Martin, R.J. Holdsworth, Meas. Sci. Technol. 17, 923 (2006)

    Article  ADS  Google Scholar 

  25. J.H. van Helden, D.C. Schram, R. Engeln, Chem. Phys. Lett. 400, 320 (2004)

    Article  ADS  Google Scholar 

  26. K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer, Berlin, 2005)

    MATH  Google Scholar 

  27. A. Amadei, D. Roccatano, M.E.F. Apol, H.J.C. Berendsen, A. Di Nola, J. Chem. Phys. 105, 7022 (1996)

    Article  ADS  Google Scholar 

  28. S. Spuler, M. Linne, A. Sappey, S. Snyder, Appl. Opt. 39, 2480 (2000)

    ADS  Google Scholar 

  29. T.E. Jenkins, Optical Sensing Techniques and Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987)

    Google Scholar 

  30. J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Sausalito, CA, 1997)

    Google Scholar 

  31. J.P. Jacobs, R.B. Warrington, Phys. Rev. A 68, 032722 (2003)

    Article  ADS  Google Scholar 

  32. J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004)

    Article  ADS  Google Scholar 

  33. L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)

    ADS  Google Scholar 

  34. J.A. Silver, Appl. Opt. 31, 707 (1992)

    Article  ADS  Google Scholar 

  35. P.C.D. Hobbs, Appl. Opt. 36, 903 (1997)

    Article  ADS  Google Scholar 

  36. J.K. Magnuson, T.N. Anderson, R.P. Lucht, U. Vijayasarathy, H. Oh, K. Annamalai, submitted to Energy Fuels

  37. P.W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, Spectrochim. Acta A 60, 1685 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P. Lucht.

Additional information

PACS

07.07.Df; 42.62.Fi; 42.65.Ky; 42.72.Bj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, T., Magnuson, J. & Lucht, R. Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury. Appl. Phys. B 87, 341–353 (2007). https://doi.org/10.1007/s00340-007-2604-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2604-z

Keywords

Navigation