Applied Physics B

, Volume 87, Issue 2, pp 341–353 | Cite as

Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury

Article

Abstract

A new sensor has been developed for measuring atomic mercury using absorption spectroscopy with 254-nm radiation generated from two sum-frequency-mixed diode lasers. Beams from a 375-nm external-cavity diode laser and a 784-nm distributed feedback diode laser are mixed in a beta-barium-borate crystal to generate approximately 4 nW of ultraviolet radiation. The development of the sensor is described along with extensive characterization experiments in a mercury vapor cell in the laboratory. An accuracy of ±6% in the absolute concentration of atomic mercury has been demonstrated by comparison with equilibrium vapor pressure calculations. The detection limit is approximately 0.1 parts per billion of atomic mercury in a meter path length for 300-K gas and a 10-s integration time. The insensitivity of the sensor to broadband attenuation is demonstrated. Measurements of collision-broadening coefficients for air, N2, Ar, and CO2 are reported, and implementation of wavelength-modulation spectroscopy with the sensor is demonstrated. Finally, results are presented from measurements with the sensor in situ in the exhaust stream of an actual coal-fired combustor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Pavlish, E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, D.L. Laudal, S.A. Benson, Fuel Process. Technol. 82, 89 (2003)Google Scholar
  2. 2.
    www.epa.gov/mercury (2006)Google Scholar
  3. 3.
    W.J. O’Dowd, R.A. Hargis, E.J. Granite, H.W. Pennline, Fuel Process. Technol. 85, 533 (2004)Google Scholar
  4. 4.
    D.L. Laudal, T.D. Brown, B.R. Nott, Fuel Process. Technol. 65, 157 (2000)Google Scholar
  5. 5.
    D.L. Laudal, J.S. Thompson, J.H. Pavlish, L.A. Brickett, P. Chu, Fuel Process. Technol. 85, 501 (2004)Google Scholar
  6. 6.
    E.J. Granite, Obstacles in the development of mercury continuous emissions monitors, in Proc. 20th Annu. Int. Pittsburgh Coal Conf., Pittsburgh, PA, 15–19 September 2003, paper 30-1Google Scholar
  7. 7.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)CrossRefADSGoogle Scholar
  8. 8.
    S.F. Hanna, R. Barron-Jimenez, T.N. Anderson, R.P. Lucht, J.A. Caton, T. Walther, Appl. Phys. B 75, 113 (2002)CrossRefADSGoogle Scholar
  9. 9.
    T.N. Anderson, R.P. Lucht, R. Barron-Jimenez, S.F. Hanna, J.A. Caton, T. Walther, S. Roy, M.S. Brown, J.R. Gord, I. Critchley, L. Flamand, Appl. Opt. 44, 1491 (2005)CrossRefADSGoogle Scholar
  10. 10.
    T.N. Anderson, R.P. Lucht, T.R. Meyer, S. Roy, J.R. Gord, Opt. Lett. 30, 1321 (2005)ADSGoogle Scholar
  11. 11.
    T.R. Meyer, S. Roy, T.N. Anderson, J.D. Miller, V.R. Katta, R.P. Lucht, J.R. Gord, Appl. Opt. 44, 6729 (2005)CrossRefADSGoogle Scholar
  12. 12.
    T.N. Anderson, R.P. Lucht, S. Priyadarsan, K. Annamalai, J.A. Caton, Appl. Opt., in pressGoogle Scholar
  13. 13.
    J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000)CrossRefADSGoogle Scholar
  14. 14.
    A.E. Carruthers, T.K. Lake, A. Shah, J.W. Allen, W. Sibbett, K. Dholaki, Opt. Commun. 255, 261 (2005)CrossRefADSGoogle Scholar
  15. 15.
    G. Herzberg, Atomic Spectra and Atomic Structure (Dover, New York, 1944)Google Scholar
  16. 16.
    Y. Nishimura, T. Fujimoto, Appl. Phys. B 38, 91 (1985)CrossRefADSGoogle Scholar
  17. 17.
    E.C. Benck, J.E. Lawler, J.T. Dakin, J. Opt. Soc. Am. B 6, 11 (1989)ADSGoogle Scholar
  18. 18.
    W.G. Schweitzer Jr., J. Opt. Soc. Am. 53, 1055 (1963)ADSGoogle Scholar
  19. 19.
    F. Bitter, Appl. Opt. 1, 1 (1962)ADSGoogle Scholar
  20. 20.
    NIST web page, http://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable1.htmGoogle Scholar
  21. 21.
    J. Humlíček, J. Quant. Spectrosc. Radiat. Transf. 21, 309 (1979)CrossRefADSGoogle Scholar
  22. 22.
    SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423, USA through www.sandia.gov/imrl/XWEB1118/xxtal.htmGoogle Scholar
  23. 23.
    V.L. Kasyutich, P.A. Martin, R.J. Holdsworth, Chem. Phys. Lett. 430, 429 (2006)ADSGoogle Scholar
  24. 24.
    V.L. Kasyutich, P.A. Martin, R.J. Holdsworth, Meas. Sci. Technol. 17, 923 (2006)CrossRefADSGoogle Scholar
  25. 25.
    J.H. van Helden, D.C. Schram, R. Engeln, Chem. Phys. Lett. 400, 320 (2004)CrossRefADSGoogle Scholar
  26. 26.
    K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer, Berlin, 2005)MATHGoogle Scholar
  27. 27.
    A. Amadei, D. Roccatano, M.E.F. Apol, H.J.C. Berendsen, A. Di Nola, J. Chem. Phys. 105, 7022 (1996)CrossRefADSGoogle Scholar
  28. 28.
    S. Spuler, M. Linne, A. Sappey, S. Snyder, Appl. Opt. 39, 2480 (2000)ADSGoogle Scholar
  29. 29.
    T.E. Jenkins, Optical Sensing Techniques and Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987)Google Scholar
  30. 30.
    J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Sausalito, CA, 1997)Google Scholar
  31. 31.
    J.P. Jacobs, R.B. Warrington, Phys. Rev. A 68, 032722 (2003)CrossRefADSGoogle Scholar
  32. 32.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004)CrossRefADSGoogle Scholar
  33. 33.
    L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)ADSGoogle Scholar
  34. 34.
    J.A. Silver, Appl. Opt. 31, 707 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    P.C.D. Hobbs, Appl. Opt. 36, 903 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    J.K. Magnuson, T.N. Anderson, R.P. Lucht, U. Vijayasarathy, H. Oh, K. Annamalai, submitted to Energy FuelsGoogle Scholar
  37. 37.
    P.W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, Spectrochim. Acta A 60, 1685 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations