Applied Physics B

, Volume 87, Issue 2, pp 227–232 | Cite as

Narrow linewidth light source for an ultraviolet optical frequency standard

  • T. Liu
  • Y.H. Wang
  • R. Dumke
  • A. Stejskal
  • Y.N. Zhao
  • J. Zhang
  • Z.H. Lu
  • L.J. Wang
  • Th. Becker
  • H. Walther


We report an ultra-narrow linewidth light source applicable for a frequency standard in the ultraviolet. The laser is a Nd:YAG laser that emits at 946 nm with 300-mW output power. It is locked to a high-finesse cavity. The minimum Allan deviation is 1.3×10-14 for an integration time of 1 s, which corresponds to a laser linewidth of 2.8 Hz. The cavity drift is measured by a frequency comb and a single-ion spectrum for different time scales. In order to investigate broadening mechanisms due to the fiber transport and doubling systems, the laser light is frequency doubled with two independent systems and compared. The measured minimum beat-note between the two laser fields is less than 1 Hz. By carrying out a high-resolution scan on a trapped single indium ion, we observe a linewidth of 260 Hz on the ion clock transition. Possible reasons for the broadening effects are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)CrossRefADSGoogle Scholar
  2. 2.
    C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature 443, 316 (2006)CrossRefADSGoogle Scholar
  3. 3.
    P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Science 309, 749 (2005)CrossRefADSGoogle Scholar
  4. 4.
    W.H. Oskay, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 94, 163001 (2005)CrossRefADSGoogle Scholar
  5. 5.
    P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, J.-S. Boulanger, S. Cundy, Phys. Rev. Lett. 95, 033001 (2005)CrossRefADSGoogle Scholar
  6. 6.
    G.P. Barwood, H.S. Margolis, G. Huang, P. Gill, H.A. Klein, Phys. Rev. Lett. 93, 133001 (2004)CrossRefADSGoogle Scholar
  7. 7.
    I. Courtillot, A. Quessada, R.P. Kovacich, A. Brusch, D. Kolker, J.J. Zondy, G.D. Rovera, P. Lemonde, Phys. Rev. A 68, 030501(R) (2003)Google Scholar
  8. 8.
    A.D. Ludlow, M.M. Boyd, T. Zelevinsky, S.M. Foreman, S. Blatt, M. Notcutt, T. Ido, J. Ye, Phys. Rev. Lett. 96, 033003 (2006)CrossRefADSGoogle Scholar
  9. 9.
    C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, L. Hollberg, Phys. Rev. Lett. 95, 083003 (2005)CrossRefADSGoogle Scholar
  10. 10.
    T. Hong, C. Cramer, E. Cook, W. Nagourney, E.N. Fortson, Opt. Lett. 30, 2644 (2005)CrossRefADSGoogle Scholar
  11. 11.
    R.J. Rafac, B.C. Young, J.A. Beall, W.M. Itano, D.J. Wineland, J.C. Bergquist, Phys. Rev. Lett. 85, 2462 (2000)CrossRefADSGoogle Scholar
  12. 12.
    N. Yu, X. Zhao, H. Dehmelt, W. Nagourney, Phys. Rev. A 50, 2738 (1994)CrossRefADSGoogle Scholar
  13. 13.
    Th. Becker, J. von Zanthier, A.Y. Nevsky, C. Schwedes, M.N. Skvortsov, H. Walther, E. Peik, Phys. Rev. A 63, 051802 (2001)CrossRefADSGoogle Scholar
  14. 14.
    J.E. Bernard, A.A. Madej, L. Marmet, B.G. Whitford, K.J. Siemsen, S. Cundy, Phys. Rev. Lett. 82, 3228 (1999)CrossRefADSGoogle Scholar
  15. 15.
    C. Tamm, D. Engelke, V. Bühner, Phys. Rev. A 61, 053405 (2000)CrossRefADSGoogle Scholar
  16. 16.
    G.P. Barwood, G. Huang, H.A. Klein, P. Gill, R.B.M. Clarke, Phys. Rev. A 59, R3178 (1999)CrossRefADSGoogle Scholar
  17. 17.
    G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, G. Gill, Science 306, 1355 (2004)CrossRefADSGoogle Scholar
  18. 18.
    H.C. Nägerl, C. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 61, 023405 (2000)CrossRefADSGoogle Scholar
  19. 19.
    M. Roberts, P. Taylor, S.V. Gateva-Kostova, R.B.M. Clarke, W.R.C. Rowley, P. Gill, Phys. Rev. A 60, 2867 (1999)CrossRefADSGoogle Scholar
  20. 20.
    S.A. Webster, P. Taylor, M. Roberts, G.P. Barwood, P. Gill, Phys. Rev. A 65, 052501 (2002)CrossRefADSGoogle Scholar
  21. 21.
    H. Dehmelt, IEEE Trans. Instrum. Meas. 31, 83 (1982)ADSGoogle Scholar
  22. 22.
    E. Peik, J. Abel, Th. Becker, J. von Zanthier, H. Walther, Phys. Rev. A 60, 439 (1999)CrossRefADSGoogle Scholar
  23. 23.
    G. Hollemann, E. Peik, A. Rusch, H. Walther, Opt. Lett. 20, 1871 (1995)ADSGoogle Scholar
  24. 24.
    A.Y. Nevsky, M. Eichenseer, J. von Zanthier, H. Walther, Opt. Commun. 210, 91 (2002)CrossRefADSGoogle Scholar
  25. 25.
    M. Eichenseer, A.Y. Nevsky, C. Schwedes, J. von Zanthier, H. Walther, J. Phys. B 36, 553 (2003)CrossRefADSGoogle Scholar
  26. 26.
    M. Eichenseer, J. von Zanthier, H. Walther, Opt. Lett. 30, 1662 (2005)CrossRefADSGoogle Scholar
  27. 27.
    A. Wolf, B. Bodermann, H.R. Telle, Opt. Lett. 25, 1098 (2000)ADSGoogle Scholar
  28. 28.
    B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)CrossRefADSGoogle Scholar
  29. 29.
    S.A. Webster, M. Oxborrow, P. Gill, Opt. Lett. 29, 1497 (2004)CrossRefADSGoogle Scholar
  30. 30.
    M. Notcutt, L.S. Ma, J. Ye, J.L. Hall, Opt. Lett. 30, 1815 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    H. Stoehr, F. Mensing, J. Helmcke, U. Sterr, Opt. Lett. 31, 736 (2006)CrossRefADSGoogle Scholar
  32. 32.
    I. Freitag, R. Henking, A. Tünnermann, H. Welling, Opt. Lett. 20, 2499 (1995)ADSGoogle Scholar
  33. 33.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)CrossRefADSGoogle Scholar
  34. 34.
    C. Salomon, D. Hils, J.L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988)ADSGoogle Scholar
  35. 35.
    T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)CrossRefADSGoogle Scholar
  36. 36.
    L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. A 36, 428 (1987)CrossRefADSGoogle Scholar
  38. 38.
    J. Reichert, R. Holzwarth, T. Udem, T.W. Hänsch, Opt. Commun. 172, 59 (1999)CrossRefADSGoogle Scholar
  39. 39.
    S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000)CrossRefADSGoogle Scholar
  40. 40.
    J. von Zanthier, Th. Becker, M. Eichenseer, A.Y. Nevsky, C. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, T. Udem, T.W. Hänsch, P.V. Pokasov, M.N. Skvortsov, S.N. Bagayev, Opt. Lett. 25, 1729 (2000)ADSGoogle Scholar
  41. 41.
    Y.H. Wang, T. Liu, A. Stejskal, Y.N. Zhao, J. Zhang, Z.H. Lu, R. Dumke, L.J. Wang, Th. Becker, H. Walther, in Proc. IEEE Frequency Control Symp., Miami, FL (2006), p. 415Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • T. Liu
    • 1
  • Y.H. Wang
    • 1
  • R. Dumke
    • 1
    • 3
  • A. Stejskal
    • 1
  • Y.N. Zhao
    • 1
  • J. Zhang
    • 1
  • Z.H. Lu
    • 1
  • L.J. Wang
    • 1
  • Th. Becker
    • 2
  • H. Walther
    • 2
  1. 1.Max Planck Research Group, Institute of Optics, Information and PhotonicsUniversity Erlangen-NurembergErlangenGermany
  2. 2.Max Planck Institute of Quantum OpticsGarchingGermany
  3. 3.School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations