Applied Physics B

, Volume 87, Issue 2, pp 363–372 | Cite as

Determining aerosol particle size distributions using time-resolved laser-induced incandescence

  • K.J. DaunEmail author
  • B.J. Stagg
  • F. Liu
  • G.J. Smallwood
  • D.R. Snelling


The particle size distribution within an aerosol containing refractory nanoparticles can be inferred using time-resolved laser-induced incandescence (TR-LII). In this procedure, a small volume of aerosol is heated to incandescent temperatures by a short laser pulse, and the incandescence of the aerosol particles is then measured as they return to the ambient gas temperature by conduction heat transfer. Although the cooling rate of an individual particle depends on its volume-to-area ratio, recovering the particle size distribution from the observed temporal decay of the LII signal is complicated by the fact that the LII signal is due to the incandescence of all particle size classes within the sample volume, and because of this, the particle size distribution is related to the time-resolved LII signal through a mathematically ill-posed equation.

This paper reviews techniques proposed in the literature for recovering particle size distributions from TR-LII data. The characteristics of this problem are then discussed in detail, with a focus on the effect of ill-posedness on the stability and uniqueness of the recovered particle size distributions. Finally, the performance of each method is evaluated and compared based on the results of a perturbation analysis.


Particle Size Distribution Soot Volume Fraction Soot Aggregate Model Parameter Uncertainty Incandescence Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Oberdörster, E. Oberdörster, J. Oberdörster, Environ. Health Persp. 113, 823 (2005)CrossRefGoogle Scholar
  2. 2.
    M.Z. Jacobson, J. Geophys. Res. 107, D19 (2002)ADSGoogle Scholar
  3. 3.
    R. Viskanta, M.P. Menguç, Prog. Energ. Combust. Sci. 13, 97 (1987)CrossRefADSGoogle Scholar
  4. 4.
    S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, Chem. Eng. Technol. 26, 966 (2003)CrossRefGoogle Scholar
  5. 5.
    L.A. Melton, Appl. Opt. 23, 2202 (1984)ADSGoogle Scholar
  6. 6.
    M. Kerker, The Scattering of Light (Academic Press, New York, 1969)Google Scholar
  7. 7.
    T.L. Farias, Ü.Ö. Köylu, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)Google Scholar
  8. 8.
    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2341 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Yale University Press, New Haven, CT, 1923)zbMATHGoogle Scholar
  13. 13.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)CrossRefGoogle Scholar
  14. 14.
    S. Twomey, J. Comput. Phys. 18, 188 (1975)CrossRefADSGoogle Scholar
  15. 15.
    G.R. Markowski, Aerosol Sci. Technol. 7, 127 (1987)Google Scholar
  16. 16.
    T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)CrossRefGoogle Scholar
  17. 17.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)ADSGoogle Scholar
  18. 18.
    S.A. Kuhlmann, J. Schumacher, J. Reimann, S. Will, Proc. PARTEC, Nuremburg, Germany, March 16–18, 2004Google Scholar
  19. 19.
    S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)CrossRefADSGoogle Scholar
  20. 20.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006)CrossRefGoogle Scholar
  21. 21.
    T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403 (2006)CrossRefADSGoogle Scholar
  22. 22.
    B.F. Kock, P. Roth, Proc. European Combustion Meeting, Orléans, October 2003Google Scholar
  23. 23.
    B. Tribalet, B.F. Kock, P. Ifeacho, P. Roth, C. Schulz, Proc. 2nd Int. Meeting and Workshop on Laser-Induced Incandescence, Bad Herrenalb, August 2006Google Scholar
  24. 24.
    P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, San Diego, CA, 1986)Google Scholar
  25. 25.
    J.J. More, D.C. Sorensen, SIAM J. Sci. Stat. Comput. 4, 553 (1983)Google Scholar
  26. 26.
    B.J. Stagg, Proc. 2nd Int. Meeting and Workshop on Laser-Induced Incandescence, Bad Herrenalb, August 2006Google Scholar
  27. 27.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)CrossRefADSGoogle Scholar
  28. 28.
    F. Liu, D.R. Snelling, G.J. Smallwood, Proc. 13th IHTC, Sydney, Australia, August 2006Google Scholar
  29. 29.
    F. Liu, K.J. Daun, G.J. Smallwood, 2nd Int. Meeting and Workshop on Laser-Induced Incandescence, Bad Herrenalb, Germany, August 2006Google Scholar
  30. 30.
    H.A. Michelsen, J. Chem. Phys. 118, 15 (2003)CrossRefGoogle Scholar
  31. 31.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123 (2001)Google Scholar
  32. 32.
    R.B. D’Agostino, M.A. Stephens, Goodness-of-fit Techniques (Dekker, New York, 1986)zbMATHGoogle Scholar
  33. 33.
    A. Yariv, Introduction to Optical Electronics (Holt, Reinhold and Winston, Inc., New York, 1971)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K.J. Daun
    • 1
    Email author
  • B.J. Stagg
    • 2
  • F. Liu
    • 1
  • G.J. Smallwood
    • 1
  • D.R. Snelling
    • 1
  1. 1.National Research Council of CanadaOttawaCanada
  2. 2.Columbian Chemicals CompanyMariettaUSA

Personalised recommendations