Applied Physics B

, Volume 87, Issue 2, pp 259–265 | Cite as

Second harmonic generation from resonantly excited arrays of gold nanoparticles

  • M.D. McMahon
  • D. Ferrara
  • C.T. Bowie
  • R. Lopez
  • R.F. Haglund Jr.
Article

Abstract

We show that second harmonic generation from lithographically prepared arrays of symmetric gold nanorods can be increased by two orders of magnitude by choosing the nanoparticle size to be resonant with the 800-nm wavelength of the 50-fs pump laser. The angular variation of the second-harmonic yield, which is defined by the pitch of the nanorod array, can be predicted using standard diffraction theory. This in turn makes it possible to bound approximately the relative contributions of dipole and quadrupole oscillations to the total second-harmonic yield; the two contributions appear to be of similar magnitude. Resonant ultrafast irradiation also changes the nanorod morphology, apparently due to surface melting and refreezing. At higher fluence, the intensity dependence of the second-harmonic yield changes from quadratic to cubic, an indication that the reshaping influences the mechanism of second-harmonic generation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984)Google Scholar
  2. 2.
    J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Phys. Rev. Lett. 83, 4045 (1999)CrossRefADSGoogle Scholar
  3. 3.
    J.I. Dadap, J. Shan, T.F. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004)CrossRefADSGoogle Scholar
  4. 4.
    H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N.V. Tkachenko, H. Lemmetyinen, J. Nonlinear Opt. Phys. Mater. 11, 421 (2002)CrossRefADSGoogle Scholar
  5. 5.
    B. Lamprecht, A. Leitner, F.R. Aussenegg, Appl. Phys. B 68, 419 (1999)CrossRefADSGoogle Scholar
  6. 6.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421 (1999)CrossRefADSGoogle Scholar
  7. 7.
    M.D. McMahon, R. Lopez, R.F. Haglund, E.A. Ray, P.H. Bunton, Phys. Rev. B 73, 041401 (2006)CrossRefADSGoogle Scholar
  8. 8.
    B.K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Appl. Phys. Lett. 86, 183109 (2005)CrossRefADSGoogle Scholar
  9. 9.
    B.K. Canfield, S. Kujalal, K. Jefimovs, T. Vallius, J. Turunen, M. Kauranen, J. Opt. A 7, 110 (2005)ADSGoogle Scholar
  10. 10.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)Google Scholar
  11. 11.
    N.I. Zheludev, V. I. Emel’yanov, J. Opt. A 6, 26 (2004)ADSGoogle Scholar
  12. 12.
    M.D. McMahon, R. Lopez, H.M. Meyer, L.C. Feldman, R.F. Haglund, Appl. Phys. B 80, 915 (2005)CrossRefADSGoogle Scholar
  13. 13.
    J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Phys. Rev. B 71, 165407 (2005)CrossRefADSGoogle Scholar
  14. 14.
    N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Phys. Rev. 174, 813 (1968)CrossRefADSGoogle Scholar
  15. 15.
    W. Lukosz, R.E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    W. Lukosz, R.E. Kunz, J. Opt. Soc. Am. 67, 1615 (1977)ADSGoogle Scholar
  17. 17.
    H.F. Arnoldus, J. Opt. Soc. Am. A 22, 190 (2005)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    H.F. Arnoldus, J.T. Foley, Opt. Commun. 246, 45 (2005)CrossRefADSGoogle Scholar
  19. 19.
    J. Enderlein, T. Ruckstuhl, S. Seeger, Appl. Opt. 38, 724 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    E. Hecht, Optics (Addison-Wesley, Reading, Massachusetts, 1998)Google Scholar
  21. 21.
    F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Träger, Phys. Rev. Lett. 84, 5644 (2000)CrossRefADSGoogle Scholar
  22. 22.
    T. Vartanyan, J. Bosbach, F. Stietz, F. Träger, Appl. Phys. B 73, 391 (2001)CrossRefADSGoogle Scholar
  23. 23.
    J. Viereck, F. Stietz, M. Stuke, T. Wenzel, F. Träger, Surf. Sci. 383, 749 (1997)CrossRefGoogle Scholar
  24. 24.
    A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, J. Boneberg, Science 309, 2043 (2005)CrossRefADSGoogle Scholar
  25. 25.
    V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, A. Plech, J. Chem. Phys. 124, 184702 (2006)CrossRefADSGoogle Scholar
  26. 26.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999)CrossRefADSGoogle Scholar
  27. 27.
    E.C. Hao, G.C. Schatz, R.C. Johnson, J.T. Hupp, J. Chem. Phys. 117, 5963 (2002)CrossRefADSGoogle Scholar
  28. 28.
    R.C. Johnson, J.T. Li, J.T. Hupp, G.C. Schatz, Chem. Phys. Lett. 356, 534 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M.D. McMahon
    • 1
    • 2
  • D. Ferrara
    • 1
    • 2
  • C.T. Bowie
    • 1
    • 2
  • R. Lopez
    • 1
    • 2
  • R.F. Haglund Jr.
    • 1
    • 2
  1. 1.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA
  2. 2.Vanderbilt Institute for Nanoscale Science and EngineeringNashvilleUSA

Personalised recommendations