Applied Physics B

, Volume 86, Issue 4, pp 623–631 | Cite as

Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers

Article

Abstract

The physical and optical properties of compressively strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers are numerically studied. The simulation results show that the maximum optical gain, transparency carrier densities, transparency radiative current densities, and differential gain of InGaAsP quantum wells can be efficiently improved by employing a compressive strain of approximately 1.24% in the InGaAsP quantum wells. The simulation results suggest that the 850-nm InGaAsP/InGaP vertical-cavity surface-emitting lasers have the best laser performance when the number of quantum wells is one, which is mainly attributed to the non-uniform hole distribution in multiple quantum wells due to high valence band offset.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Iga, IEEE J. Sel. Top. Quantum Electron. QE-6, 1201 (2000)CrossRefGoogle Scholar
  2. 2.
    W.W. Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, G.R. Hadley, IEEE J. Quantum Electron. 33, 1810 (1997)CrossRefGoogle Scholar
  3. 3.
    E. Towe, R.F. Leheny, A. Yang, IEEE J. Sel. Top. Quantum Electron. QE-6, 1458 (2000)CrossRefGoogle Scholar
  4. 4.
    J.S. Gustavsson, A. Haglund, J. Bengtsson, A. Larsson, IEEE J. Quantum Electron. 38, 1089 (2002)CrossRefGoogle Scholar
  5. 5.
    D. Wiedenmann, R. King, C. Jung, R. Jäger, R. Michalzik, P. Schnitzer, M. Kicherer, K.J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 5, 503 (1999)CrossRefGoogle Scholar
  6. 6.
    F.H. Peters, M.H. MacDougal, IEEE Photon. Technol. Lett. 13, 645 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Yablonovitch, E.O. Kane, IEEE J. Lightwave Technol. 6, 1292 (1988)CrossRefGoogle Scholar
  8. 8.
    E.P. O’Reilly, A.R. Adams, IEEE J. Quantum Electron. QE-30, 366 (1994)CrossRefGoogle Scholar
  9. 9.
    T.R. Chen, B. Zhao, L. Eng, Y.H. Zhoung, J. O’Brien, A. Yariv, Electron. Lett. 29, 1525 (1993)Google Scholar
  10. 10.
    T.E. Sale, C. Amamo, Y. Ohiso, T. Kurokawa, Appl. Phys. Lett. 71, 1002 (1997)CrossRefGoogle Scholar
  11. 11.
    J.S. Roberts, J.P.R. David, L. Smith, P.L. Tihanyi, J. Cryst. Growth 195, 668 (1998)CrossRefGoogle Scholar
  12. 12.
    L.J. Mawst, S. Rusli, A. Al-Muhanna, J.K. Wade, IEEE J. Sel. Top. Quantum Electron. 5, 785 (1999)CrossRefGoogle Scholar
  13. 13.
    N. Tansu, D. Zhou, L.J. Mawst, IEEE Photon. Technol. Lett. 12, 603 (2000)CrossRefGoogle Scholar
  14. 14.
    H.C. Kuo, Y.S. Chang, F.I. Lai, T.H. Hsueh, Electron. Lett. 39, 1051 (2003)CrossRefGoogle Scholar
  15. 15.
    Y.H. Chang, H.C. Kuo, F.I. Lai, Y.A. Chang, C.Y. Lu, L.H. Laih, S.C. Wang, IEEE J. Lightwave Technol. 22, 2828 (2004)CrossRefGoogle Scholar
  16. 16.
    PICS3D by Crosslight Software, Inc., Burnaby, Canada, 2005 (http://www.crosslight.com)Google Scholar
  17. 17.
    C.-S. Chang, S.L. Chuang, IEEE J. Sel. Top. Quantum Electron. 1, 218 (1995)CrossRefGoogle Scholar
  18. 18.
    Y.-P. Chao, S.L. Chuang, Phys. Rev. B 46, 4110 (1992)CrossRefGoogle Scholar
  19. 19.
    J. Minch, S.H. Park, T. Keating, S.L. Chuang, IEEE J. Quantum Electron. QE-35, 771 (1999)CrossRefGoogle Scholar
  20. 20.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)CrossRefGoogle Scholar
  21. 21.
    Y.-H. Cho, K.-S. Kim, S.-W. Ryu, S.-K. Kim, B.-D. Choe, H. Lim, Appl. Phys. Lett. 66, 1785 (1995)CrossRefGoogle Scholar
  22. 22.
    Y.-H. Cho, B.-D. Choe, H. Lim, Appl. Phys. Lett. 69, 3740 (1996)CrossRefGoogle Scholar
  23. 23.
    S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)Google Scholar
  24. 24.
    D. Ahn, S.L. Chuang, Y.-C. Chang, J. Appl. Phys. 64, 4056 (1988)CrossRefGoogle Scholar
  25. 25.
    D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-26, 13 (1990)CrossRefGoogle Scholar
  26. 26.
    J.C.L. Yong, J.M. Rorison, I.H. White, IEEE J. Quantum Electron. QE-38, 1553 (2002)CrossRefGoogle Scholar
  27. 27.
    W.J. Fan, S.T. Ng, S.F. Yoon, M.F. Li, T.C. Chong, J. Appl. Phys. 93, 5836 (2003)CrossRefGoogle Scholar
  28. 28.
    B. Romero, J. Arias, I. Esquivias, M. Cada, Appl. Phys. Lett. 76, 1504 (2000)CrossRefGoogle Scholar
  29. 29.
    G.K. Wachutka, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9, 1141 (1990)Google Scholar
  30. 30.
    J. Piprek, Semiconductor Optoelectronic Device: Introduction to Physics and Simulation (Academic Press, San Diego, 2003)Google Scholar
  31. 31.
    W.W. Chow, E.D. Jones, N.A. Modine, A.A. Allerman, S.R. Kurtz, Appl. Phys. Lett. 75, 2891 (1999)CrossRefGoogle Scholar
  32. 32.
    J.W. Matthews, A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)CrossRefGoogle Scholar
  33. 33.
    X. Wu, J.-M. Baribeau, J.A. Gupta, M. Beaulieu, J. Cryst. Growth 282, 18 (2005)CrossRefGoogle Scholar
  34. 34.
    Y.-C. Liang, H.-Y. Lee, H.-J. Liu, C.-K. Huang, T.-B. Wu, J. Cryst. Growth 279, 114 (2005)CrossRefGoogle Scholar
  35. 35.
    T. Kitatani, A. Taike, M. Aoki, J. Cryst. Growth 273, 19 (2004)CrossRefGoogle Scholar
  36. 36.
    H.C. Kuo, H.H. Yao, Y.H. Chang, Y.A. Chang, M.Y. Tsai, J. Hsieh, E.Y. Chang, S.C. Wang, J. Cryst. Growth 272, 538 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsNational Changhua University of EducationChanghuaTaiwan
  2. 2.Department of Photonics and Institute of Electro-Optical EngineeringNational Chiao-Tung UniversityHsinchuTaiwan
  3. 3.Department of Mechanical EngineeringHsiuping Institute of TechnologyTaichungTaiwan

Personalised recommendations