Applied Physics B

, Volume 86, Issue 3, pp 431–435 | Cite as

Design considerations for table-top, laser-based VUV and X-ray free electron lasers

  • F. Grüner
  • S. Becker
  • U. Schramm
  • T. Eichner
  • M. Fuchs
  • R. Weingartner
  • D. Habs
  • J. Meyer-ter-Vehn
  • M. Geissler
  • M. Ferrario
  • L. Serafini
  • B. van der Geer
  • H. Backe
  • W. Lauth
  • S. Reiche
Rapid communication

Abstract

A recent breakthrough in laser-plasma accelerators, based upon ultrashort high-intensity lasers, demonstrated the generation of quasi-monoenergetic GeV-electrons. With future Petawatt lasers ultra-high beam currents of ∼100 kA in ∼10 fs can be expected, allowing for drastic reduction in the undulator length of free-electron-lasers (FELs). We present a discussion of the key aspects of a table-top FEL design, including energy loss and chirps induced by space-charge and wakefields. These effects become important for an optimized table-top FEL operation. A first proof-of-principle VUV case is considered as well as a table-top X-ray-FEL which may also open a brilliant light source for new methods in clinical diagnostics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.P.D. Mangles, C. Murphy, Z. Najmudin, A. Thomas, J. Collier, A. Dangor, E. Divall, P. Foster, J. Gallacher, C. Hooker, D. Jaroszynski, A. Langley, W. Mori, P. Norreys, F. Tsung, R. Viskup, B. Walton, K. Krushelnick, Nature 431, 535 (2004)CrossRefADSGoogle Scholar
  2. 2.
    C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiller, C. Nieter, J. Cary, W. Leemans, Nature 431, 538 (2004)CrossRefADSGoogle Scholar
  3. 3.
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004)CrossRefADSGoogle Scholar
  4. 4.
    W.P. Leemans, B. Nagler, A. Gonsalves, C. Toth, K. Nakamura, C. Geddes, E. Esarey, C. Schroeder, S. Hooker, Nature Phys. 2, 696 (2006)CrossRefADSGoogle Scholar
  5. 5.
    R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406, 752 (2000)CrossRefADSGoogle Scholar
  6. 6.
    A. Baltus, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz, Nature 421, 611 (2003)CrossRefADSGoogle Scholar
  7. 7.
    W. Thomlinson, P. Suortti, D. Chapman, Nucl. Instrum. Methods Phys. Res. A 543, 288 (2005)CrossRefADSGoogle Scholar
  8. 8.
    A. Pukhov, J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)CrossRefADSGoogle Scholar
  9. 9.
    A. Pukhov, S. Gordienko, Philos. Trans. R. Soc. London A 364, 623 (2006)CrossRefADSGoogle Scholar
  10. 10.
    M. Geissler, J. Schreiber, J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006)CrossRefADSGoogle Scholar
  11. 11.
    D.J. Spence, A. Butler, S. Hooker, J. Opt. Soc. Am. B 20, 138 (2003)ADSGoogle Scholar
  12. 12.
    http://www.attoworld.de/research/PFS.htmlGoogle Scholar
  13. 13.
    R. Bonifacio, C. Pellegrini, L.M. Narduci, Opt. Commun. 50, 373 (1984)CrossRefADSGoogle Scholar
  14. 14.
    S. Reiche, Nucl. Instrum. Methods Phys. Res. A 429, 243 (1999)CrossRefADSGoogle Scholar
  15. 15.
    M. Xie, Nucl. Instrum. Methods Phys. Res. A 445, 59 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Technical Design Report: http://www.hasylab.desy.de/facility/fel/vuv/ttf2_update/TESLA-FEL2002-01.pdfGoogle Scholar
  17. 17.
    M.J. de Loos, S.B. van der Geer, Proc. 5th Eur. Part. Acc. Conf., Sitges, 1241 (1996)Google Scholar
  18. 18.
    M. Dohlus, T. Limberg, Proc. FEL 2004 Conf., 18-21Google Scholar
  19. 19.
    G. Fubiana, J. Qiang, E. Esarey, W.P. Leemans, Phys. Rev. ST Accel. Beams 9, 064402 (2006)Google Scholar
  20. 20.
    E. Saldin, E.A. Schneidmiller, M.V. Yurkov, Nucl. Instrum. Methods Phys. Res. A 417, 158 (1998)CrossRefGoogle Scholar
  21. 21.
    K. Floettmann, Astra User’s Manual, 2000, http://www.desy.de/mpyflo/Google Scholar
  22. 22.
    M. Ferrario, J.E. Clendenin, D.T. Palmer, J.B. Rosenzweig, L. Serafini, Proc. of the 2nd ICFA Adv. Acc. Workshop on “The Physics of High Brightness Beams”, UCLA, Nov., 1999; see also SLAC-PUB-8400Google Scholar
  23. 23.
    A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993)Google Scholar
  24. 24.
    K. Bane, SLAC-PUB-11829 (2006)Google Scholar
  25. 25.
    M. Sands, Phys. Rev. 97, 470 (1955)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • F. Grüner
    • 1
  • S. Becker
    • 1
  • U. Schramm
    • 1
  • T. Eichner
    • 1
  • M. Fuchs
    • 1
  • R. Weingartner
    • 1
  • D. Habs
    • 1
  • J. Meyer-ter-Vehn
    • 2
  • M. Geissler
    • 2
  • M. Ferrario
    • 3
  • L. Serafini
    • 3
  • B. van der Geer
    • 4
  • H. Backe
    • 5
  • W. Lauth
    • 5
  • S. Reiche
    • 6
  1. 1.Department of PhysicsLudwig-Maximilians-Universität MünchenGarchingGermany
  2. 2.Max-Planck Institute of Quantum OpticsGarchingGermany
  3. 3.INFNFrascatiItaly
  4. 4.Pulsar PhysicsSoestNetherlands
  5. 5.Institute of Nuclear PhysicsMainzGermany
  6. 6.University of California Los Angeles, UCLALos AngelesUSA

Personalised recommendations