Applied Physics B

, 87:139 | Cite as

Laser ignition of flammable mixtures via a solid core optical fiber

  • H. El-RabiiEmail author
  • G. Gaborel


To date no commercial fiber coupled laser systems have reached the irradiance and pulse energy required for flammable mixtures ignition. In this work we report preliminary results on the ignition of two-phase mixtures promoted by a laser delivering pulses through optical fiber. Experiments undertaken on free beam path configurations have allowed identification of the optical parameters required for laser ignition. The fiber coupled system used is based on a Q-switched nanosecond laser operating at 1064 nm. The fiber input angle and the focal length have been identified as the most important parameters. We demonstrated the possibility of delivering nanosecond pulses of 30 mJ focused onto a spot of 200 μm through a solid core optical fiber, and to promote ignition of n-heptane/air and JP4/air mixtures.


Incident Energy Solid Core Focus Spot Diameter Ignition Probability Laser Ignition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Syage, E. Fournier, R. Rianda, R. Cohen, J. Appl. Phys. 64, 1499 (1988)CrossRefADSGoogle Scholar
  2. 2.
    T. Spliganin, A. McIlroy, E. Fournier, R. Cohen, J. Syage, Combust. Flame 102, 310 (1995)CrossRefGoogle Scholar
  3. 3.
    Y.-L. Chen, J. Lewis, C. Parigger, J. Quant. Spectrosc. Radiat. Transf. 66, 41 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Y.L. Chen, J. Lewis, C. Parigger, Opt. Express 9, 360 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    H. El-Rabii, J.C. Rolon, Advances in Combustion and Atmospheric Pollution (Torus-Press, Moscow, 2004)Google Scholar
  6. 6.
    T. Phuoc, F. White, Combust. Flame 119, 203 (1999)CrossRefGoogle Scholar
  7. 7.
    J.L. Beduneau, B. Kim, L. Zimmer, Y. Ikeda, Combust. Flame 132, 653 (2003)CrossRefGoogle Scholar
  8. 8.
    T.W. Lee, V. Jain, S. Kozola, Combust. Flame 125, 1320 (2001)CrossRefGoogle Scholar
  9. 9.
    H. El-Rabii, G. Gaborel, J.P. Lapios, D. Thévenin, J.C. Rolon, J.P. Martin, Opt. Commun. 256, 495 (2005)CrossRefADSGoogle Scholar
  10. 10.
    H. El-Rabii, K. Zähringer, J.C. Rolon, F. Lacas, Combust. Sci. Technol. 176, 1391 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Stakhiv, R. Gilber, H. Kopecek, A.M. Zheltikov, E. Wintner, Laser Phys. 146, 738 (2004)Google Scholar
  12. 12.
    S.O. Konorov, A.B. Fedotov, O.A. Kolevatova, V.I. Beloglazov, N.B. Skibina, A.V. Shcherbakov, E. Wintner, A.M. Zheltikov, J. Phys. D 36, 1375 (2003)CrossRefADSGoogle Scholar
  13. 13.
    A.F. Yalin, M. DeFoort, B. Willson, Opt. Lett. 30, 206 (2005)Google Scholar
  14. 14.
    A. Lemaire, Ph.D. thesis (École Centrale, Paris, 2003)Google Scholar
  15. 15.
    R. Lang, J. Acoust. Soc. Am. 34, 6 (1962)CrossRefADSGoogle Scholar
  16. 16.
    N.G.R. Broderick, H.L. Offerhaus, D.J. Richardson, R.A. Sammut, J. Caplen, L. Dong, Opt. Fiber Technol. 5, 185 (1999)CrossRefADSGoogle Scholar
  17. 17.
    R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, D.C. Allan, Science 285, 1537 (1999)CrossRefGoogle Scholar
  18. 18.
    T.X. Phuoc, Opt. Lasers Eng. 44, 351 (2006)CrossRefMathSciNetGoogle Scholar
  19. 19.
    D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkatamaran, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta, Science 301, 1702 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Combustion et de DétoniqueChasseneuil-FuturoscopeFrance
  2. 2.Vibro-Meter FranceFléacFrance

Personalised recommendations