Applied Physics B

, Volume 86, Issue 3, pp 425–429 | Cite as

Analysis of metamaterials using transmission line models

Article

Abstract

We use simple transmission line models with lumped elements of inductance and capacitance to interpret optical transmission and reflection spectra of cut wires and cut-wire pairs in the near infrared region. The numerical values of the elements are obtained by fitting experimental or numerical simulated reflectance and transmittance spectra. The scattering parameters and the retrieved effective material parameters calculated from the transmission line models show good agreements with those obtained from experiments or numerical simulations. This indicates that transmission line theory is a powerful tool for designing and analyzing metamaterials at optical frequencies.

Keywords

Resonance Mode Parallel Combination Transmission Line Model Transmission Line Theory Negative Index Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)CrossRefADSGoogle Scholar
  2. 2.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  3. 3.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)CrossRefADSGoogle Scholar
  4. 4.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)CrossRefADSGoogle Scholar
  5. 5.
    G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, S. Linden, Opt. Lett. 30, 3198 (2005)CrossRefADSGoogle Scholar
  6. 6.
    N. Marcuvitz, J. Schwinger, J. Appl. Phys. 22, 806 (1951)CrossRefMathSciNetMATHADSGoogle Scholar
  7. 7.
    N. Engheta, A. Salandrino, A. Alú, Phys. Rev. Lett. 95, 095504 (2005)CrossRefADSGoogle Scholar
  8. 8.
    G.V. Eleftheriades, A.K. Iyer, P.C. Kramer, IEEE Trans. Microw. Theory Technol. 50, 2702 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Lai, C. Caloz, T. Itoh, IEEE Microw. Mag. Sept., 34 (2004)Google Scholar
  10. 10.
    G.V. Eleftheriades, O. Siddiqui, A.K. Iyer, IEEE Microw. Wireless Comp. Lett. 13, 51 (2003)Google Scholar
  11. 11.
    C. Caloz, T. Itoh, IEEE Trans. Antennas Propag. 52, 1159 (2004)CrossRefADSGoogle Scholar
  12. 12.
    D.M. Pozar, Microwave Engineering (Wiley, New York, 2005), 3rd Edn., p. 187Google Scholar
  13. 13.
    A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)CrossRefGoogle Scholar
  14. 14.
    D.R. Smith, S. Schultz, Phys. Rev. B 65, 195104 (2002)CrossRefADSGoogle Scholar
  15. 15.
    R. Ulrich, Infrared Phys. 7, 37 (1967)CrossRefADSGoogle Scholar
  16. 16.
    L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, to be publishedGoogle Scholar
  17. 17.
    CST Microwave Studio, Darmstadt, GermanyGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • L. Fu
    • 1
  • H. Schweizer
    • 1
  • H. Guo
    • 1
  • N. Liu
    • 1
  • H. Giessen
    • 1
  1. 1.4th Physics InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations