Applied Physics B

, Volume 87, Issue 1, pp 193–204 | Cite as

3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling



The objective of this study is to investigate 3-pentanone fluorescence experiments in a constant volume vessel at high temperature and high pressure to underline the influent parameters in conditions close to those encountered in internal combustion engines. To obtain quantitative analysis, measured fluorescence signals must be corrected by considering the influence of preponderant parameters such as temperature, pressure and gas composition. Quantitative dependences of fluorescence on thermodynamic parameters are measured and compared with the predictions of a photophysical model, which combines the effects of temperature, pressure, excitation wavelength on fluorescence quantum yield. The increase of 3-pentanone fluorescence with pressure is due to the vibrational relaxation of energy levels. The fluorescence decreases with increasing temperature, except at low temperature where the fluorescence increase is due to an activation of intersystem crossing between triplet toward singlet levels. The influences of thermodynamic parameters are based on an increase of the non-radiative decay rate with the vibrational energy level of excited electronic state and the important collisions to remove the excess vibrational energy. Experimental and calculated results show a satisfactory agreement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000)CrossRefADSGoogle Scholar
  2. 2.
    T. Fujikawa, Y. Hattori, K. Akihama, In: SAE Paper 972944 (1997)Google Scholar
  3. 3.
    H. Krämer, S. Einecke, C. Schulz, V. Sick, S.R. Nattrass, J.S. Kitching, In: SAE Paper 982467 (1998)Google Scholar
  4. 4.
    S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, U. Maas, In: SAE Paper 982468 (1998)Google Scholar
  5. 5.
    J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)CrossRefADSGoogle Scholar
  6. 6.
    C. Schulz, V. Sick, Prog. Energ. Combust. Sci. 31, 75 (2005)CrossRefGoogle Scholar
  7. 7.
    J.D. Koch, PhD Thesis (Stanford University, 2005)Google Scholar
  8. 8.
    M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    P. Guibert, V. Modica, C. Morin, Exp. Fluids 40, 245 (2006)CrossRefGoogle Scholar
  10. 10.
    F. Grossmann, P.B. Monkhouse, M. Rider, V. Sick, J. Wolfrum, Appl. Phys. B 62, 249 (1996)CrossRefADSGoogle Scholar
  11. 11.
    W.N. Nau, J.C. Scaiano, J. Phys. Chem. 100, 11360 (1996)CrossRefGoogle Scholar
  12. 12.
    M.C. Thurber, R.K. Hanson, Appl. Phys. B 69, 229 (1999)CrossRefADSGoogle Scholar
  13. 13.
    M.C. Thurber, PhD Thesis (Stanford University, 1999)Google Scholar
  14. 14.
    J.D. Koch, R.K. Hanson, In: 41st AIAA Aerospace Sciences Meeting and Exhibit (2003), p. 403Google Scholar
  15. 15.
    A. Braeuer, F. Beyrau, A. Leipertz, Appl. Opt. 45, 4982 (2006)CrossRefADSGoogle Scholar
  16. 16.
    D.A. Hansen, E.K.C. Lee, J. Chem. Phys. 62, 183 (1975)CrossRefADSGoogle Scholar
  17. 17.
    K.K. Irikura, D.J. Frurip, Computational thermochemistry: prediction and estimation of molecular thermodynamics (American Chemical Society, Washington DC, 1998)Google Scholar
  18. 18.
    R.C. Reid, J.M. Prausnitz, B.E. Poling, The properties of gases and liquids, 4th edn. (McGraw-Hill, New York, 1987)Google Scholar
  19. 19.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids (Wiley, New York, 1964)Google Scholar
  20. 20.
    W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Proc. Combust. Inst. 30, 1545 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Mécanique PhysiqueUniversité Pierre et Marie Curie (Paris 6) – CNRS FRE 2867Saint-Cyr-l’EcoleFrance

Personalised recommendations