Advertisement

Applied Physics B

, Volume 87, Issue 1, pp 37–44 | Cite as

Raman effects in the infrared supercontinuum generation in soft-glass PCFs

  • V.L. Kalashnikov
  • E. Sorokin
  • I.T. Sorokina
Article

Abstract

Measurements of the Raman gain spectra in the SF6 and SF57 highly nonlinear glasses demonstrated twice as high Raman shift in comparison with the fused silica. Numerical simulation predicted that a large Raman shift in combination with high nonlinearity can significantly reduce the required input pulse intensity for supercontinuum in these glasses, retaining the necessary degree of coherence. We found that the degradation of the SC coherence due to Raman soliton jitter can be effectively controlled by a correct choice of input intensity and fiber length. Also it was found that a high degree of coherence correlates with the spectrum shape in the vicinity of the Raman threshold, providing an convenient experimental observable.

Keywords

Soliton Input Intensity Tellurite Glass Raman Gain Spectral Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Phys. Rev. Lett. 85, 2264 (2000)CrossRefADSGoogle Scholar
  2. 2.
    D.A. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)CrossRefADSGoogle Scholar
  3. 3.
    A. Baltuska, Z. Wei, M.S. Pschenichnikov, D.A. Wiersma, R. Szipocs, Appl. Phys. B 65, 175 (1997)CrossRefADSGoogle Scholar
  4. 4.
    R.R. Alfano (Ed.), The Supercontinuum Laser Sorce (Springer, New York, 1989)Google Scholar
  5. 5.
    P. Russell, Nature 299, 358 (2003)Google Scholar
  6. 6.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)CrossRefADSGoogle Scholar
  7. 7.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)Google Scholar
  8. 8.
    J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakov, D. Nickel, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn, Phys. Rev. Lett. 88, 173901 (2002)CrossRefADSGoogle Scholar
  9. 9.
    V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina, V.V.R. Kanth Kumar, A.K. Georgem, Appl. Phys. B 79, 591 (2004)CrossRefADSGoogle Scholar
  10. 10.
    N. Nishizava, T. Goto, Japan. J. Appl. Phys. 40, L365 (2001)CrossRefADSGoogle Scholar
  11. 11.
    K. Saitoh, M. Koshiba, Opt. Express 12, 2027 (2004)CrossRefADSGoogle Scholar
  12. 12.
    J. Chen, F.Ö. Ilday, F.X. Kärtner, Soliton self-frequency shift from 1.03 μm to 1.55 μm, in Advanced Solid-State Photonics 2006 Technical Digest (The Optical Society of America, Washington, DC, 2006), TuB9Google Scholar
  13. 13.
    V.V.R. Kanth Kumar, A.K. George, W.H. Reeves, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A.J. Taylor, Opt. Express 10, 1520 (2002)ADSGoogle Scholar
  14. 14.
    H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V.V.R. Kanth Kumar, A.K. George, J.C. Knight, P.S.J. Russell, Opt. Express 11, 3196 (2003)ADSGoogle Scholar
  15. 15.
    I. Cristiani, R. Tediosi, L. Tartara, V. Degiorgio, Opt. Express 12, 124 (2004)CrossRefADSGoogle Scholar
  16. 16.
    J.M. Dudley, S. Coen, Opt. Lett. 27, 1180 (2002)ADSGoogle Scholar
  17. 17.
    K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Phys. Rev. Lett. 90, 113904 (2003)CrossRefADSGoogle Scholar
  18. 18.
    K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, B.R. Washburn, K. Weber, R.S. Windeler, Appl. Phys. B 77, 269 (2003)CrossRefADSGoogle Scholar
  19. 19.
    S. Naumov, E. Sorokin, V.L. Kalashnikov, G. Tempea, I.T. Sorokina, Appl. Phys. B 76, 1 (2003)CrossRefADSGoogle Scholar
  20. 20.
    R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.C. Champarnaud-Mesjard, Opt. Express 13, 1144 (2005)CrossRefADSGoogle Scholar
  21. 21.
    P.H. Pantell, H.E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969)Google Scholar
  22. 22.
    C. Rivero, R. Stegeman, M. Couzi, D. Talaga, T. Cardinal, K. Richardson, G. Stegeman, Opt. Express 13, 4759 (2005)CrossRefADSGoogle Scholar
  23. 23.
    W.D. Johnston Jr., I.P. Kaminow, J.B. Bergman, Appl. Phys. Lett. 13, 190 (1968)CrossRefADSGoogle Scholar
  24. 24.
    R.H. Stolen, E.P. Ippen, Appl. Phys. Lett. 22, 276 (1973)CrossRefADSGoogle Scholar
  25. 25.
    I.T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H.P. Jenssen, OSA Trends Opt. Photon. 19, 359 (1998)Google Scholar
  26. 26.
    D. Heiman, R.W. Hellwarth, D.S. Hamilton, J. Non-Cryst. Solids 34, 63 (1979)CrossRefADSGoogle Scholar
  27. 27.
    Y. Lai, H.A. Haus, Phys. Rev. A 40, 844 (1989)CrossRefADSGoogle Scholar
  28. 28.
    H.W. Lee, Phys. Rep. 259, 147 (1995)CrossRefMathSciNetGoogle Scholar
  29. 29.
    S.J. Carter, Phys. Rev. A 51, 3274 (1995)CrossRefADSGoogle Scholar
  30. 30.
    P.D. Drummond, J.F. Corney, J. Opt. Soc. Am. B 18, 139 (2001)ADSGoogle Scholar
  31. 31.
    F.X. Kärtner, D.J. Dougherty, H.A. Haus, E.P. Ippen, J. Opt. Soc. Am. B 11, 1267 (1994)ADSGoogle Scholar
  32. 32.
    E. Serebryannikov, C. Rivero, R. Stegeman, A. Zheltikov, J. Opt. Soc. Am. B, unpublishedGoogle Scholar
  33. 33.
    J.F. Corney, P.D. Drummond, J. Opt. Soc. Am. B 18, 153 (2001)ADSGoogle Scholar
  34. 34.
    B. Kibler, J.M. Dudley, S. Coen, Appl. Phys. B 81, 337 (2005)CrossRefADSGoogle Scholar
  35. 35.
    E.E. Serebrynnikov, A.M. Zheltikov, J. Opt. Soc. Am. B 23, 1882 (2006)CrossRefADSGoogle Scholar
  36. 36.
    J.Y.Y. Leong, P. Petropoulos, J.H.V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R.C. Moore, K.E. Frampton, V. Finazzi, X. Feng, T.M. Monro, D.J. Richardson, J. Lightwave Technol. 24, 183 (2006)CrossRefADSGoogle Scholar
  37. 37.
    X. Gu, M. Kimmel, A.P. Shreenath, R. Trebino, J.M. Dudley, S. Coen, R.S. Windeler, Opt. Express 11, 2697 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    F. Lu, W.H. Knox, Opt. Express 12, 347 (2004)CrossRefADSGoogle Scholar
  39. 39.
    B.R. Washburn, N.R. Newbury, Opt. Express 12, 2166 (2004)CrossRefADSGoogle Scholar
  40. 40.
    A.E. Siegman, Phys. Rev. A 39, 1264 (1989)CrossRefADSGoogle Scholar
  41. 41.
    H.A. Haus, J. Opt. Soc. Am. B 8, 1122 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    H.A. Haus, IEEE J. Quantum Electron. 29, 983 (1993)CrossRefADSGoogle Scholar
  43. 43.
    H.A. Haus, M. Margalit, C.X. Yu, J. Opt. Soc. Am. B 17, 1240 (2000)ADSGoogle Scholar
  44. 44.
    C.H. Henry, R.F. Kazarinov, Rev. Mod. Phys. 68, 801 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für PhotonikTU WienViennaAustria

Personalised recommendations