Applied Physics B

, Volume 87, Issue 1, pp 169–178

Measurements of near-IR water vapor absorption at high pressure and temperature

  • G.B. Rieker
  • X. Liu
  • H. Li
  • J.B. Jeffries
  • R.K. Hanson
Article

Abstract

Tunable diode lasers (TDLs) are used to measure high resolution (0.1 cm-1), near-infrared (NIR) water vapor absorption spectra at 700 K and pressures up to 30 atm within a high-pressure and -temperature optical cell in a high-uniformity tube furnace. Both direct absorption and wavelength modulation with second harmonic detection (WMS-2f) spectra are obtained for 6 cm-1 regions near 7204 cm-1 and 7435 cm-1. Direct absorption measurements at 700 K and 10 atm are compared with simulations using spectral parameters from HITRAN and a hybrid database combining HITRAN with measured spectral constants for transitions in the two target spectral regions. The hybrid database reduces RMS error between the simulation and the measurements by 45% for the 7204 cm-1 region and 28% for the 7435 cm-1 region. At pressures above 10 atm, the breakdown of the impact approximation inherent to the Lorentzian line shape model becomes apparent in the direct absorption spectra, and measured results are in agreement with model results and trends at elevated temperatures reported in the literature. The wavelength-modulation spectra are shown to be less affected by the breakdown of the impact approximation and measurements agree well with the hybrid database predictions to higher pressures (30 atm).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.A. Kranendonk, J.W. Walewski, T. Kim, S.T. Sanders, Proc. Combust. Inst. 30, 1619 (2005)CrossRefGoogle Scholar
  2. 2.
    D.W. Mattison, J.B. Jeffries, R.K. Hanson, R.R. Steeper, S. De Zilwa, J.E. Dec, M. Sjoberg, W. Hwang, Proc. Combust. Inst. 31 (2006), DOI: 10.1016/j.proci.2006.07.048 (2006)Google Scholar
  3. 3.
    G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Proc. Combust. Inst. 31 (2006), DOI: 10.1016/j.proci.2006.07.158Google Scholar
  4. 4.
    S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587 (2000)CrossRefGoogle Scholar
  5. 5.
    S.T. Sanders, D.W. Mattison, L. Ma, J.B. Jeffries, R.K. Hanson, Opt. Express 10, 505 (2002)ADSGoogle Scholar
  6. 6.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)CrossRefADSGoogle Scholar
  7. 7.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)CrossRefADSGoogle Scholar
  8. 8.
    S.S. Penner, P. Varanasi, J. Quantum Spectrosc. Radiat. Transf. 7, 687 (1967)CrossRefADSGoogle Scholar
  9. 9.
    P. Varanasi, S. Chou, S.S. Penner, J. Quantum Spectrosc. Radiat. Transf. 8, 1537 (1968)CrossRefADSGoogle Scholar
  10. 10.
    M.A. Styrikovich, E.G. Kokhanova, G.V. Yukhnevich, Proc. 10th Int. Conf. Properties of Steam (1984), p. 67Google Scholar
  11. 11.
    J.M. Hartmann, M.Y. Perrin, Q. Ma, R.H. Tipping, J. Quantum Spectrosc. Radiat. Transf. 49, 675 (1993)CrossRefADSGoogle Scholar
  12. 12.
    S.A. Clough, F.X. Kneizys, R.W. Davies, Atmosph. Res. 23, 229 (1989)CrossRefGoogle Scholar
  13. 13.
    D.E. Burch, D.A. Gryvnak, J.D. Pembrook, Report AFCRL-71-0124 (1971)Google Scholar
  14. 14.
    R.H. Tipping, Q. Ma, Atmosph. Res. 36, 69 (1995)CrossRefGoogle Scholar
  15. 15.
    Q. Ma, R.H. Tipping, J. Chem. Phys. 112, 574 (2000)CrossRefADSGoogle Scholar
  16. 16.
    S.A. Clough, F.X. Kneizys, R.W. Davies, R.R. Gamache, R.H. Tipping, in Atmospheric Water Vapor, ed. by A. Deepak, T.D. Wilkerson, L.H. Ruhnke (Academic, New York, 1980)Google Scholar
  17. 17.
    S.A. Clough, M.W. Shephard, E.J. Mlawer, J.S. Delamere, M.J. Iacono, K. Cady-Pereira, S. Boukabara, P.D. Brown, J. Quantum Spectrosc. Radiat. Transf. 91, 233 (2005)CrossRefADSGoogle Scholar
  18. 18.
    R.J. Nordstrom, M.E. Thomas, in Atmospheric Water Vapor, ed. by A. Deepak, T.D. Wilkerson, L.H. Ruhnke (Academic, New York, 1980)Google Scholar
  19. 19.
    M.E. Thomas, R.J. Nordstrom, J. Quantum Spectrosc. Radiat. Transf. 28, 81 (1982)CrossRefADSGoogle Scholar
  20. 20.
    X. Liu, X. Zhou, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol., in pressGoogle Scholar
  21. 21.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 16, 2437 (2005)CrossRefADSGoogle Scholar
  22. 22.
    G.B. Rieker, H. Li, X. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, submitted to Meas. Sci. Technol.Google Scholar
  23. 23.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)CrossRefADSGoogle Scholar
  24. 24.
    L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)ADSGoogle Scholar
  25. 25.
    J.A. Silver, D.J. Kane, Meas. Sci. Technol. 10, 845 (1999)CrossRefADSGoogle Scholar
  26. 26.
    R. Engelbrecht, Spectrochim. Acta A 60, 3291 (2004)CrossRefGoogle Scholar
  27. 27.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 43, 6500 (2004)CrossRefADSGoogle Scholar
  28. 28.
    K. Uehara, H. Tai, Appl. Opt. 31, 809 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    R.T. Wainner, B.D. Green, M.G. Allen, M.A. White, J. Stafford-Evans, R. Naper, Appl. Phys. B 75, 249 (2002)CrossRefADSGoogle Scholar
  30. 30.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)CrossRefADSGoogle Scholar
  31. 31.
    V. Nagali, Diode laser study of high-pressure water-vapor spectroscopy, Ph.D. dissertation (Stanford University, Stanford CA, 1998)Google Scholar
  32. 32.
    S.F. Rice, R.R. Steeper, C.A. LaJeunesse, R.G. Hanush, J.D. Aiken, Sandia Report SAND99-8260 (2000)Google Scholar
  33. 33.
    J. Hahn, “Untersuchungen der Reaktion von Wasserstoffatomen mit Sauerstoffmolekulen (H+O2+M→HO2+M) in weiten Druck- und Temperaturbereichen”, Ph.D. dissertation (Universitat zu Göttingen, Göttingen, 2003)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • G.B. Rieker
    • 1
  • X. Liu
    • 1
  • H. Li
    • 1
  • J.B. Jeffries
    • 1
  • R.K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations