Applied Physics B

, Volume 86, Issue 2, pp 243–247 | Cite as

Scanning mirror on a vibrating membrane for dynamic optical trapping

  • Y. Zhao
  • W.C. Zhai
  • W.L. Seah
  • K.Y. Lim
  • F.C. Cheong
  • C.H. Sow
Article

Abstract

We report a simple technique for the dynamic optical trapping of colloidal particles. The main feature of this technique is an addition of a scanning mirror on a vibrating membrane in the optical train of a typical optical tweezers setup. When the membrane is vibrated using sound input from a normal speaker, the laser beam that is reflected off the mirror traces out a wide variety of laser patterns of Lissajous figures depending on the input sound frequency and amplitude. The resultant pattern is subsequently focused down by a laser tweezers setup onto an aqueous suspension of monodispersed polystyrene microspheres. As a result, a wide variety of planar assemblies of the colloidal microspheres corresponding to the laser patterns are organized. In addition to the optical trapping force, the scanning laser also exerts a driving force on the microspheres. Optically assisted assemblies of microspheres can hence be manipulated to translate along the laser scanning pattern. In an elliptically patterned optical trap, repetitive scanning of the focused laser beam over an assembly of optically trapped microspheres drives the microspheres into rotation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)ADSGoogle Scholar
  2. 2.
    A. Terry, J. Oakey, D.W.M. Marr, Appl. Phys. Lett. 81, 1555 (2002)CrossRefADSGoogle Scholar
  3. 3.
    V. Garces-Chavez, D. McGioin, H. Melville, W. Sibbett, K. Dholakia, Nature 419, 145 (2002)CrossRefADSGoogle Scholar
  4. 4.
    M.P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, Science 296, 1101 (2002)CrossRefADSGoogle Scholar
  5. 5.
    P.C. Morgensen, J. Glückstad, Opt. Commun. 175, 75 (2000)CrossRefADSGoogle Scholar
  6. 6.
    L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia, Science 292, 912 (2002)CrossRefADSGoogle Scholar
  7. 7.
    J.E. Curtis, B.A. Koss, D.G. Grier, Opt. Commun. 207, 169 (2002)CrossRefADSGoogle Scholar
  8. 8.
    S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996)CrossRefADSGoogle Scholar
  9. 9.
    E.R. Dufresne, D.G. Grier, Rev. Sci. Instrum. 69, 1974 (1998)CrossRefADSGoogle Scholar
  10. 10.
    K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, Opt. Lett. 16, 1463 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    K. Visscher, S.P. Gross, S.M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996)CrossRefGoogle Scholar
  12. 12.
    A. Manzer, H.J.T. Smith, Am. J. Phys. 40, 186 (1972)CrossRefADSGoogle Scholar
  13. 13.
    A. Leitner, Am. J. Phys. 35, 1029 (1967)CrossRefADSGoogle Scholar
  14. 14.
    http://www.physics.nus.edu.sg/˜physowch/SMVM/index.htmGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Y. Zhao
    • 1
  • W.C. Zhai
    • 1
  • W.L. Seah
    • 1
  • K.Y. Lim
    • 1
  • F.C. Cheong
    • 2
  • C.H. Sow
    • 2
  1. 1.NUS High School of Mathematics and ScienceSingaporeSingapore
  2. 2.Department of Physics, Blk S12National University of SingaporeSingaporeSingapore

Personalised recommendations