Applied Physics B

, Volume 87, Issue 1, pp 13–16

A novel THz source based on a two-color Nd:LSB microchip-laser and a LT-GaAsSb photomixer

  • U. Willer
  • R. Wilk
  • W. Schippers
  • S. Böttger
  • D. Nodop
  • T. Schossig
  • W. Schade
  • M. Mikulics
  • M. Koch
  • M. Walther
  • H. Niemann
  • B. Güttler
Article

Abstract

A two-color Nd:LSB microchip-laser that simultaneously emits at 1061.3 nm and 1063.9 nm is used for photomixing. Since LT-GaAs which is typically utilized for photomixing cannot be excited efficiently with wavelengths exceeding 1 μm, LT-GaAsSb with a bandgap energy designed to match the laser emission is used here for the first time. With this system THz radiation at 0.7 THz is generated and detected with a bolometer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tredicucci, R. Köhler, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, Physica E 21, 846 (2004)CrossRefADSGoogle Scholar
  2. 2.
    T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, K. Donhuijsen, Electron. Lett. 37, 1461 (2001)CrossRefGoogle Scholar
  3. 3.
    I.S. Gregory, W.R. Tribe, C. Baker, B.E. Cole, M.J. Evans, L. Spencer, M. Pepper, M. Missous, Appl. Phys. Lett. 86, 204104 (2005)CrossRefADSGoogle Scholar
  4. 4.
    H. Ito, F. Nakajima, T. Furuta, T. Ishibashi, Semicond. Sci. Technol. 20, 191 (2005)CrossRefADSGoogle Scholar
  5. 5.
    M. Tani, S. Matsuura, K. Sakai, M. Hangyo, IEEE Microw. 7, 282 (1997)CrossRefGoogle Scholar
  6. 6.
    O. Morikawa, M. Tonouchi, M. Hangyo, Appl. Phys. Lett. 75, 3772 (1999)CrossRefADSGoogle Scholar
  7. 7.
    P. Gu, M. Tani, M. Hyodo, K. Sakai, T. Hidaka, Japan. J. Appl. Phys. 37, L976 (1998)CrossRefGoogle Scholar
  8. 8.
    M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, K. Sakai, Electron. Lett. 32, 1589 (1996)CrossRefGoogle Scholar
  9. 9.
    M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J.P. Meyn, M. Matus, S.W. Koch, J.V. Moloney, Opt. Commun. 207, 261 (2002)CrossRefADSGoogle Scholar
  10. 10.
    M. Sukhotin, E.R. Brown, D. Driscoll, M. Hanson, A.C. Gossard, Appl. Phys. Lett. 83, 3921 (2003)CrossRefADSGoogle Scholar
  11. 11.
    C. Baker, I.S. Gregory, W.R. Tribe, I.V. Bradley, M.J. Evans, M. Withers, P.F. Taday, V.P. Wallace, E.H. Linfield, A.G. Davies, M. Missous, Appl. Phys. Lett. 83, 4113 (2003)CrossRefADSGoogle Scholar
  12. 12.
    M. Suzuki, M. Tonouchi, Appl. Phys. Lett. 86, 051104 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Sigmund, C. Sydlo, H.L. Hartnagel, N. Benker H. Fuess, F. Rutz, T. Kleine-Ostmann, M. Koch, Appl. Phys. Lett. 87, 252103 (2005)CrossRefGoogle Scholar
  14. 14.
    E.R. Brown, F.W. Smith, K.A. McIntosh, J. Appl. Phys. 73, 1480 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • U. Willer
    • 1
    • 2
  • R. Wilk
    • 3
  • W. Schippers
    • 1
  • S. Böttger
    • 1
  • D. Nodop
    • 1
  • T. Schossig
    • 1
  • W. Schade
    • 1
    • 2
  • M. Mikulics
    • 3
  • M. Koch
    • 3
  • M. Walther
    • 4
  • H. Niemann
    • 5
  • B. Güttler
    • 5
  1. 1.Institute for Physics and Physical TechnologiesClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.LaserApplicationCenterClausthal University of TechnologyClausthal-ZellerfeldGermany
  3. 3.Department of High-Frequency EngineeringTechnical University BraunschweigBraunschweigGermany
  4. 4.Fraunhofer Institute for Applied Solid-State PhysicsFreiburgGermany
  5. 5.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations